当前状态:
, 最新更新时间: ,
doi: 10.11999/JEIT240486
摘要:
在低信噪比环境下,阵列天线获取空域信号的来波方向极其困难,导致一般的波束形成方法无法准确形成正对入射信号的波束。针对上述问题,该文提出了一种基于双卷积自编码器的盲接收自适应波束形成(Dual Convolutional AutoEncoder-Adaptive Beamforming, DCAE-ABF)方法,该方法在基于大量空域统计信息的情况下,以时域-频域联合条件作为约束,利用两个独立的卷积自编码器(CAE)分别对阵列接收信号与辐射源信号进行特征提取,并使用深度神经网络(DNN)将两个CAE的特征编码进行连接,构建DCAE网络,实现在低信噪比环境下,面对未知频率和来波方向的入射信号时,也能够自适应形成正对入射信号的波束,达到盲接收的效果。仿真实验结果表明,在低信噪比环境下,单信号与双信号入射时所带来的信噪比增益均高于常规波束形成(CBF)方法与基于最小均方误差的自适应波束形成(Minimum Mean Square Error-Adaptive BeamForming, MMSE-ABF)方法,以及基于卷积神经网络的自适应波束形成方法(Convolutional Neural Networks- Adaptive BeamForming, CNN-ABF),且该增益在入射信号频率、角度变化时仍具有良好的稳定性。