高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
优先发表栏目展示本刊经同行评议确定正式录用的文章,这些文章目前处在编校过程,尚未确定卷期及页码,但可以根据DOI进行引用。本栏目内容尚未正式出版,未经编辑部许可,不得转载。
显示方式:
复值Hopfield神经网络的信号盲检测一步计算电路
洪庆辉, 孙辰, 肖平旦, 韦正苗, 杜四春
当前状态:  doi: 10.11999/JEIT240224
[摘要](87) [HTML全文](15) [PDF 3432KB](30)
摘要:
信号盲检测在大规模通信网络中具有重要的意义并得到了广泛的应用,如何快速得到信号盲检测结果是新一代实时通信网络的迫切需求。为此,该文从模拟电路的角度设计了一种能加速信号盲检测的复值Hopfield神经网络(CHNN)电路,该电路可一步完成大规模并行计算,提高信号盲检测速度,同时该电路可以通过调整忆阻器的电导和输入电压来实现可编程功能。Pspice仿真结果表明,该电路的计算精度可达99%以上,运行时间比Matlab软件仿真快3个数量级,此外,该电路具有良好的鲁棒性,即使在20%的噪声干扰下,仍能保持99%以上的计算精度。
一种纯方位多目标跟踪的联合多高斯混合概率假设密度滤波器
薛昱, 冯西安
当前状态:  doi: 10.11999/JEIT240201
[摘要](92) [HTML全文](18) [PDF 4310KB](11)
摘要:
现有的多模型-高斯混合-概率假设密度(MM-GM-PHD)滤波器被广泛用于不确定机动目标跟踪,但它不能在不同模型下保持并行的估计,导致各模型的似然值滞后于目标机动。为此,该文提出一种联合多高斯混合概率假设密度(JMGM-PHD)滤波器,并将其用于纯方位多目标跟踪。首先,推导了JMGM模型,其中每个单目标状态估计由一组并行的、带模型概率的高斯函数描述,该状态估计的概率由一个非负的权重来表征。一组权值、模型概率、均值和协方差被统称为JMGM分量。根据贝叶斯规则,推导了JMGM分量的更新方法。然后,利用JMGM模型近似多目标PHD。根据交互式多模型(IMM)规则,推导出JMGM分量的交互、预测和估计方法。将所提JMGM-PHD滤波器应用于纯方位跟踪(BOT)时,针对同时执行平移和旋转的观测站,基于复合函数求导规则推导出一种计算线性化观测矩阵的方法。所提JMGM-PHD滤波器保持了单模型PHD滤波器的形式,但能够自适应地跟踪不确定机动目标。仿真结果表明,JMGM-PHD滤波器克服了似然值滞后于目标机动的问题,在跟踪精度和计算成本方面均优于MM-GM-PHD滤波器。
低秩和联合平滑性约束下的时变海表面温度重构方法
李姣, 万腾汶, 邱伟
当前状态:  doi: 10.11999/JEIT240253
[摘要](55) [HTML全文](17) [PDF 2046KB](5)
摘要:
海表面温度对于海洋动力过程及海气相互作用等具有重要意义,是海洋环境关键要素之一。浮标是海表面温度观测的常用手段,但由于浮标在空间的分布不规则,浮标采集的海表面温度数据也呈现非规则性。另外,浮标在实际工作中难免存在故障,致使采集的海表面温度数据存在缺失。因此对存在缺失的非规则海表面温度数据进行重构具有重要意义。该文通过将海表面温度数据建立为时变图信号,利用图信号处理方法解决海表面温度缺失数据重构问题。首先,利用数据的低秩性和时域-图域联合变差特性构建海表面温度重构模型;其次,基于交替方向乘子法框架提出一种求解该优化模型的基于低秩和联合平滑性(LRJS)的时变图信号重构方法,并分析该方法的计算复杂度和估计误差的理论极限;最后,采用南海和太平洋海域海表温度数据对方法的有效性进行了评估,结果表明,与现有缺失数据重构方法相比,该文所提LRJS方法有更高的重建精度。
输入串联输出串联型模块化高压电源功率变换拓扑改进设计
赵斌, 戴剑骁, 顾洋
当前状态:  doi: 10.11999/JEIT240090
[摘要](76) [HTML全文](21) [PDF 12779KB](4)
摘要:
模块化高压电源具有高效率、高可靠性、可重构性等特点在大功率高压器件中得到广泛应用。其中基于串并联谐振变换器的输入串联输出串联型功率变换拓扑适用于高频高压工作环境,具有减少功率损耗,绕组介质损耗,利用多级变压器寄生参数等优势,有广泛的应用前景。目前关于该拓扑的研究主要集中于理论分析和效率优化,在实际高压环境应用中多级变压器绕组间存在的高压隔离问题还未得到有效解决,该文提出多级变压器共用原边绕组的设计,简化传统变压器单级绕制方式所存在的高压隔离问题。然而该绕制方案会造成多级变压器不均压和电压发散现象,因此该文同时基于利用变压器和倍压整流电路中二极管的寄生参数,提出改进的拓扑设计,有效解决了分压不均问题,进行了仿真验证与试验验证。仿真结果与实验结果均证明了所提共用原边绕组的高压隔离结构和改进拓扑的有效性。
基于实值子空间线性变换的非均匀圆形阵列高效二维测向方法
孟祥天, 经哲涵, 曹丙霞, 沙明辉, 朱应申, 闫锋刚
当前状态:  doi: 10.11999/JEIT240188
[摘要](49) [HTML全文](22) [PDF 1896KB](11)
摘要:
由于均匀圆阵(UCA)的阵列流型不具有范德蒙结构,通常采用模式空间方法构造虚拟线性阵列,因此,UCA阵列下使用结构变换已经是2维测向的必要基本假设。该文通过对虚拟信号模型进行特征分析,避免了线性阵列的结构变换,提出一种适用于UCA和非均匀圆阵(NUCA)的实值高效2维测向方法。因此,新方法利用经前/后向平滑的阵列协方差矩阵(FBACM)以及分离实虚部后的和差变换,获得了维度相互适配的阵列流型和实值子空间,理论揭示了所获实值子空间与原始复值子空间的线性张成关系,构建了无虚假目标的空间谱,且可以推广至NUCA,增强了实值算法对于圆形阵列结构的适应性。同时,理论揭示了上述方法具有秩增强优势。数值仿真实验表明,与传统UCA阵列下的模式空间方法相比,该文所提出方法能够在显着降低复杂性的情况下,提供相似的估计性能和更好的角度分辨率。同时,在考虑幅度和相位误差等情况时,所提方法具有较强的鲁棒性。
联合多曝光融合和图像去模糊的深度网络
张梅, 赵康威, 朱金辉
当前状态:  doi: 10.11999/JEIT240113
[摘要](60) [HTML全文](23) [PDF 9006KB](9)
摘要:
多曝光图像融合可提高图像的动态范围,从而获取高质量的图像。对于在像自动驾驶等快速运动场景中获得的模糊的长曝光图像,利用通用的图像融合方法将其直接与低曝光图像融合得到的图像质量并不高。目前暂缺乏对带有运动模糊的长曝光和短曝光图像的端到端融合方法。基于此,该文提出一种联合多曝光融合和图像去模糊的深度网络(DF-Net)端到端地解决带有运动模糊的长短曝光图像融合问题。该方法提出一种结合小波变换的残差模块用于构建编码器和解码器,其中设计单个编码器对短曝光图像进行特征提取,构建基于编码器和解码器的多级结构对带有模糊的长曝光图像进行特征提取,设计残差均值激励融合模块进行长短曝光特征的融合,最后通过解码器重建图像。由于缺少基准数据集,创建了基于数据集 SICE 的带有运动模糊的多曝光融合数据集,用于模型的训练与测试。最后,从定性和定量的角度将所设计的模型和方法和其他先进的图像去模糊和多曝光融合的分步优化方法进行了实验对比,验证了该文的模型和方法对带有运动模糊的多曝光图像融合的优越性。并在移动车辆上采集到的多曝光数据组上进行验证,结果显示了所提方法解决实际问题的有效性。
智能反射面辅助无线网络性能及最优位置分析
束锋, 赖斯豪, 刘川, 高炜, 董榕恩, 王艳
当前状态:  doi: 10.11999/JEIT240488
[摘要](111) [HTML全文](27) [PDF 2774KB](14)
摘要:
当基站(BS)和用户的位置固定,基站到智能反射面(IRS)与IRS到用户的距离和一定时,该文在视距信道和瑞利信道下基于最大化系统可达速率准则对无源和有源IRS的最优放置位置进行分析。首先,运用相位对齐和大数定律推导了无源和有源IRS辅助无线网络可达速率的闭合表达式;然后,分析了基站到IRS的路径损耗指数\begin{document}${\beta _1}$\end{document}和IRS到用户的路径损耗指数\begin{document}${\beta _2}$\end{document}对IRS最优部署位置的影响,即当\begin{document}${\beta _{\text{1}}} \gt {\beta _{\text{2}}}$\end{document}时,无源IRS的最优部署位置始终靠近基站,随着\begin{document}${\beta _1}$\end{document}\begin{document}${\beta _2}$\end{document}的差距逐渐增大,有源IRS的最优部署位置逐渐靠近基站;当\begin{document}${\beta _1} \lt {\beta _2}$\end{document}时,则得到相反的结论。仿真结果表明:当\begin{document}${\beta _1} = {\beta _2}$\end{document}且无源IRS到基站和到用户的距离相等时,系统的可达速率性能最差。当固定有源IRS处的噪声功率且增加用户处的噪声功率时,IRS的最优部署位置始终靠近用户;当固定后者增大前者时,IRS的最优部署位置逐渐靠近基站。
基于双重YOLOv8-pose模型的探地雷达双曲线关键点检测与目标定位
侯斐斐, 彭应昊, 董健, 银雪
当前状态:  doi: 10.11999/JEIT240242
[摘要](290) [HTML全文](86) [PDF 3384KB](38)
摘要:
探地雷达(GPR)是一种可用于地下目标识别的无损检测方法。针对现有方法存在不同尺度目标兼容性差、复杂图像识别难度大、无法精确定位等问题,该文提出一种基于双重YOLO姿态模型(YOLOv8-pose)的GPR双曲线关键点检测与目标定位,命名为双重YOLO关键点定位方法(DYKL),用于地下目标的检测与精确定位。所提模型架构包含两个阶段:首先,第1阶段是基于YOLOv8-pose模型的GPR目标检测,以确定候选目标的位置;接着,第1阶段的部分训练权重被共享并传递到第2阶段,后者以此为基础继续训练YOLOv8-pose网络,用于候选目标特征的关键点检测及获取,从而实现地下目标的自动化定位。通过与级联区域卷积网络(Cascade R-CNN)、 更快的区域卷积网络(Faster R-CNN)、 实时对象检测模型(RTMDet)以及“你只看一次”人脸模型(YOLOv7-face)4种先进的深度模型进行比较,所提模型平均识别准确率达到98.8%,性能优于其他模型。结果表明所提DYKL模型具有较高的识别准确性与较强的鲁棒性,可以为地下目标的精确定位提供参考。
基于传输公平性的多无人机通感一体化空间部署与波束成形设计
时统志, 李博, 杨洪娟, 张桐, 王钢
当前状态:  doi: 10.11999/JEIT240590
[摘要](221) [HTML全文](47) [PDF 2345KB](32)
摘要:
针对农村偏远地区通信不畅的临时突发性问题,该文提出一种自适应的多无人机(UAV)辅助通感一体化(ISAC)机制,在地面用户和感测目标呈簇状随机分布的情况下,通过合理调度多无人机实现覆盖式通信保障,为无人机使能的通感一体系统提供了一种新的解决思路和方案。该文主要研究了无人机空间部署及其对地面设备的波束成形等问题,在空地关联约束条件下,系统可通过优化无人机的通信和感知波束成形变量组,最大限度地提高用户传输可达速率的下限,同时保证基本的通感需求。为了有效解决所考虑的非凸优化问题,该文借助基于高斯核的均值漂移算法(MS),用以处理关联策略中的混合整型线性问题,此外,结合2次变换与连续凸逼近(SCA)的相关技巧,采用块坐标下降(BCD)的方式优化波束成形,以获取次优解。数值结果验证了自适应机制的有效性。
面向地电极电流场透地通信的两阶段长相关信号捕获方法
徐湛, 张旭, 杨小龙
当前状态:  doi: 10.11999/JEIT240399
[摘要](117) [HTML全文](49) [PDF 3969KB](7)
摘要:
地电极电流场透地通信可以为地下强遮蔽空间信息传输提供解决方案。针对接收的电流场信号信噪比(SNR)低、易畸变且受载波频偏影响大导致捕获困难的问题,该文设计一种长同步信号帧结构,在此基础上提出一种联合频偏粗估计和精估计的两阶段长相关信号捕获算法。该算法第1阶段利用接收时域信号中的训练符号,依据最大似然算法进行采样间隔偏差粗估计,并计算采样点补偿间隔粗估计值。第2阶段结合粗估计值和接收信噪比,确定采样点补偿间隔精估计值的遍历范围,进而设计本地补偿后的长相关模板信号,实现电流场信号的精确捕获。本研究在距离地面30.26 m的地下强遮蔽空间中进行了算法性能验证。实验结果表明,与传统的滑动相关算法相比,该文所提算法具有更高的捕获成功概率。
面向不平衡图像数据的对抗自编码器过采样算法
职为梅, 常智, 卢俊华, 耿正乾
当前状态:  doi: 10.11999/JEIT240330
[摘要](68) [HTML全文](36) [PDF 6910KB](13)
摘要:
许多适用于低维数据的传统不平衡学习算法在图像数据上的效果并不理想。基于生成对抗网络(GAN)的过采样算法虽然可以生成高质量图像,但在类不平衡情况下容易产生模式崩溃问题。基于自编码器(AE)的过采样算法容易训练,但生成的图像质量较低。为进一步提高过采样算法在不平衡图像中生成样本的质量和训练的稳定性,该文基于生成对抗网络和自编码器的思想提出一种融合自编码器和生成对抗网络的过采样算法(BAEGAN)。首先在自编码器中引入一个条件嵌入层,使用预训练的条件自编码器初始化GAN以稳定模型训练;然后改进判别器的输出结构,引入一种融合焦点损失和梯度惩罚的损失函数以减轻类不平衡的影响;最后从潜在向量的分布映射中使用合成少数类过采样技术(SMOTE)来生成高质量的图像。在4个图像数据集上的实验结果表明该算法在生成图像质量和过采样后的分类性能上优于具有辅助分类器的条件生成对抗网络(ACGAN)、平衡生成对抗网络 (BAGAN)等过采样算法,能有效解决图像数据中的类不平衡问题。
自适应卷积注意力与掩码结构协同的显著目标检测
朱磊, 袁金垚, 王文武, 蔡小嫚
当前状态:  doi: 10.11999/JEIT240431
[摘要](143) [HTML全文](29) [PDF 3072KB](27)
摘要:
显著目标检测(SOD)旨在模仿人类视觉系统注意力机制和认知机制来自动提取场景中的显著物体。虽然现有基于卷积神经网络 (CNN)或Transformer的模型不断刷新该领域方法的性能,但较少研究关注以下两个问题:(1)此领域多数方法常采用逐像素点的密集预测方式以获取像素显著值,然而该方式不符合基于人类视觉系统的场景解析机制,即人眼通常对语义区域进行整体分析而非关注像素级信息;(2)增强上下文信息关联在SOD任务中受到广泛关注,但通过Transformer主干结构获取长程关联特征不一定具有优势。SOD应更关注目标在适当区域内其中心-邻域差异性而非全局长程依赖。针对上述问题,该文提出一种新的显著目标检测模型,将CNN形式的自适应注意力和掩码注意力集成到网络中,以提高显著目标检测的性能。该算法设计了基于掩码感知的解码模块,通过将交叉注意力限制在预测的掩码区域来感知图像特征,有助于网络更好地聚焦于显著目标的整体区域。同时,该文设计了基于卷积注意力的上下文特征增强模块,与Transformer逐层建立长程关系不同,该模块仅捕获最高层特征中的适当上下文关联,避免引入无关的全局信息。该文在4个广泛使用的数据集上进行了实验评估,结果表明,该文提出的方法在不同场景下均取得了显著的性能提升,具有良好的泛化能力和稳定性。
基于自适应交互式多卡尔曼滤波模型的组合导航算法研究
陈光武, 王思琪, 司涌波, 周鑫
当前状态:  doi: 10.11999/JEIT240426
[摘要](115) [HTML全文](31) [PDF 5625KB](15)
摘要:
在组合导航系统中,信息融合和定位精度取决于惯性系统和传感器的特性,然而在实际应用中获取先验知识仍然具有挑战性。为解决车辆导航中卫星信号质量的变化及系统非线性降低组合导航系统性能的问题,该文提出一种基于多卡尔曼滤波器的模糊自适应交互式多模型算法(FAIMM-MKF),将基于卫星信号质量的模糊控制器(Fuzzy Controller)与自适应交互多模型(AIMM)相结合,通过组合无迹卡尔曼滤波(UKF)、迭代扩展卡尔曼滤波(IEKF)和平方根容积卡尔曼滤波(SRCKF)3种不同的滤波器,适配车辆动力学模型,并通过车载半实物仿真实验验证该方法的性能。结果表明,在卫星信号质量发生改变的情况下,与传统的交互式多模型算法相比,该方法显著提高了车辆在复杂环境中的定位精度。
弧形边界在伴随变量法下的电磁灵敏度分析
张玉贤, 朱海鸽, 冯晓丽, 杨利霞, 黄志祥
当前状态:  doi: 10.11999/JEIT240432
[摘要](46) [HTML全文](25) [PDF 6177KB](2)
摘要:
电磁灵敏度分析是评估设计参数变化对电磁性能影响的一种方法,它通过计算灵敏度信息指导结构模型分析,以满足设计规范。商业软件在进行电磁结构优化设计时,常通过调整几何结构并使用传统算法,但这种方法计算耗时且资源占用大。为了提高模型设计的效率,该文提出一种稳定高效的处理方案,即伴随变量法(AVM),利用仅有2次算法模拟条件下,实现在参数变换上进行1~2阶灵敏度估计。当前AVM的绝大多数应用局限在矩形边界参数的灵敏度分析,该文首次开拓性地将AVM拓展到弧形边界参数的灵敏度分析。基于固定的本构参数、频率依赖性目标函数以及瞬态脉冲函数的3种不同情形设计的条件,实现了对弧形结构的电磁灵敏度的高效分析。与有限差分方法(FDM)相比,该方法在计算效率上得到了显著的提高。该方法有效实施显著拓宽了AVM在弧形边界上的应用范围,可应用于等离子体模型的电磁结构、复杂天线模型的边缘结构等优化问题上。当计算资源较少的情况下,可满足电磁结构优化的可靠性和稳定性。
基于多尺度特征增强与全局-局部特征聚合的视频目标分割算法
侯志强, 董佳乐, 马素刚, 王晨旭, 杨小宝, 王昀琛
当前状态:  doi: 10.11999/JEIT231394
[摘要](136) [HTML全文](37) [PDF 6035KB](44)
摘要:
针对记忆网络算法中多尺度特征表达能力不足和浅层特征没有充分利用的问题,该文提出一种多尺度特征增强与全局-局部特征聚合的视频目标分割(VOS)算法。首先,通过多尺度特征增强模块融合可参考掩码分支和可参考RGB分支的不同尺度特征信息,增强多尺度特征的表达能力;同时,建立了全局-局部特征聚合模块,利用不同大小感受野的卷积操作来提取特征,并通过特征聚合模块来自适应地融合全局区域和局部区域的特征,这种融合方式可以更好地捕捉目标的全局特征和细节信息,提高分割的准确性;最后,设计了跨层融合模块,利用浅层特征的空间细节信息来提升分割掩码的精度,通过将浅层特征与深层特征融合,能更好地捕捉目标的细节和边缘信息。实验结果表明,在公开数据集DAVIS2016, DAVIS2017和YouTube-2018上,该文算法的综合性能分别达到91.8%、84.5%和83.0%,在单目标和多目标分割任务上都能实时运行。
封面
2024 年 10 期封面
2024, 46(10).  
[摘要](20) [PDF 5311KB](3)
摘要:
2024 年 10 期目次
2024, 46(10): 1-4.  
[摘要](19) [HTML全文](10) [PDF 227KB](3)
摘要:
面向开放环境的自适应智能感知与持续学习研究进展专题
面向SAR目标识别成像参数敏感性的深度学习技术研究进展
何奇山, 赵凌君, 计科峰, 匡纲要
2024, 46(10): 3827-3848.   doi: 10.11999/JEIT240155
[摘要](296) [HTML全文](94) [PDF 4931KB](59)
摘要:
随着人工智能技术的发展,基于深度神经网络的合成孔径雷达(SAR)目标识别得到了广泛关注。然而,SAR系统的成像机制导致了图像特性与成像参数之间的强相关性,因此深度学习框架下的目标识别算法精度极易受成像参数敏感性的干扰,这成为了制约先进智能算法部署到实际工程中的一大障碍。该文首先回顾了SAR图像目标识别技术的发展与相关数据集,从雷达工作的成像几何、载荷参数和噪声干扰3个角度,深入分析了成像参数变化对图像特性的影响;然后,从模型、数据、特征3个维度,总结归纳了现有文献关于深度学习技术对成像参数敏感性的鲁棒性与泛化性这一问题的研究进展;接下来,汇总并分析了典型方法的实验结果;最后讨论了在未来有望突破成像参数敏感性这一问题的深度学习技术研究方向。
深度模型的持续学习综述:理论、方法和应用
张东阳, 陆子轩, 刘军民, 李澜宇
2024, 46(10): 3849-3878.   doi: 10.11999/JEIT240095
[摘要](315) [HTML全文](92) [PDF 4238KB](63)
摘要:
自然界中的生物需要在其一生中不断地学习并适应环境,这种持续学习的能力是生物学习系统的基础。尽管深度学习方法在计算机视觉和自然语言处理领域取得了重要进展,但它们在连续学习任务时面临严重的灾难性遗忘问题,即模型在学习新知识时会遗忘旧知识,这在很大程度上限制了深度学习方法的应用。持续学习研究对人工智能系统的改进和应用具有重要意义。该文对深度模型的持续学习进行了全面回顾。首先介绍了持续学习的定义和典型设定,阐述了问题的关键。其次,将现有持续学习方法划分为基于正则化、基于回放、基于梯度和基于网络结构4类,分析了各类方法的优点和局限性。同时,该文强调并总结了持续学习领域的理论分析进展,建立了理论与方法之间的联系。此外,提供了常用的数据集和评价指标,以公正评判不同方法。最后,从多个领域的应用价值出发,讨论了深度持续方法面临的问题、挑战和未来研究方向。
类别数据流和特征空间双分离的类增量学习算法
云涛, 潘泉, 刘磊, 白向龙, 刘宏
2024, 46(10): 3879-3889.   doi: 10.11999/JEIT231064
[摘要](232) [HTML全文](112) [PDF 8336KB](55)
摘要:
针对类增量学习(CIL)中的灾难性遗忘问题,该文提出一种不同类的数据流和特征空间双分离的类增量学习算法。双分离(S2)算法在1次增量任务中包含2个阶段。第1个阶段通过分类损失、蒸馏损失和对比损失的综合约束训练网络。根据模块功能对各类的数据流进行分离,以增强新网络对新类别的识别能力。通过对比损失的约束,增大各类数据在特征空间中的距离,避免由于旧类样本的不完备性造成特征空间被新类侵蚀。第2个阶段对不均衡的数据集进行动态均衡采样,利用得到的均衡数据集对新网络进行动态微调。利用实测和仿真数据构建了一个飞机目标高分辨率距离像增量学习数据集,实验结果表明该算法相比其它几种对比算法在保持高可塑性的同时,具有更高的稳定性,综合性能更优。
结合未知类特征生成与分类得分修正的SAR目标开集识别方法
陈健, 雍奇锋, 杜兰, 尹林伟
2024, 46(10): 3890-3907.   doi: 10.11999/JEIT240138
[摘要](83) [HTML全文](21) [PDF 12343KB](18)
摘要:
现有合成孔径雷达(SAR)目标识别方法大多局限于闭集假定,即认为训练模板库内训练目标类别包含全部待测目标类别,不适用于库内已知类和库外未知新类目标共存的真实开放识别环境。针对训练模板库目标类别非完备情况下的SAR目标识别问题,该文提出一种结合未知类特征生成与分类得分修正的SAR目标开集识别方法。该方法在利用已知类学习原型网络保证已知类识别精度的基础上结合对潜在未知类特征分布的先验认知,生成未知类特征更新网络,进一步保证特征空间中已知类、未知类特征的鉴别性。原型网络更新完成后,所提方法挑选各已知类边界特征,并计算边界特征到各自类原型的距离(极大距离),通过极值理论对各已知类极大距离进行概率拟合确定了各已知类最大分布区域。测试阶段在度量待测样本特征与各已知类原型距离预测闭集分类得分的基础上,计算了各距离在对应已知类极大距离分布上的概率,并修正闭集分类得分,实现了拒判概率的自动确定。基于MSTAR实测数据集的实验结果表明,所提方法能够有效表征真实未知类特征分布并提升网络特征空间已知类与未知类特征的鉴别性,可同时实现对库内已知类目标的准确识别和对库外未知类新目标的准确拒判。
采用自适应预筛选的遥感图像目标开集检测研究
党思航, 李晓哲, 夏召强, 蒋晓悦, 桂术亮, 冯晓毅
2024, 46(10): 3908-3917.   doi: 10.11999/JEIT231426
[摘要](130) [HTML全文](63) [PDF 3054KB](28)
摘要:
开放动态环境下目标类别不断丰富,遥感目标检测问题不能局限于已知类目标的鉴别,还需要对未知类目标做出有效判决。该文设计一种基于自适应预筛选的遥感开集目标检测网络,首先,提出面向目标候选框的自适应预筛选模块,依据筛选出的候选框坐标得到具有丰富语义信息和空间特征的查询传递至解码器。然后,结合原始图像中目标边缘信息提出一种伪标签选取方法,并以开集判决为目的构造损失函数,提高网络对未知新类特征的学习能力。最后,采用MAR20飞机目标识别数据集模拟不同的开放动态遥感目标检测环境,通过广泛的对比实验和消融实验,验证了该文方法能够实现对已知类目标的可靠检测和未知类目标的有效检出。
SAR目标增量识别中基于最大化非重合体积的样例挑选方法
李斌, 崔宗勇, 汪浩瀚, 周正, 田宇, 曹宗杰
2024, 46(10): 3918-3927.   doi: 10.11999/JEIT240217
[摘要](90) [HTML全文](37) [PDF 2793KB](14)
摘要:
为了确保合成孔径雷达(SAR)自动目标识别(ATR)系统能够迅速适应新的应用环境,其必须具备快速学习新类的能力。目前的SAR ATR系统在学习新类时需要不断重复训练所有旧类样本,这会造成大量存储资源的浪费,同时识别模型无法快速更新。保留少量的旧类样例进行后续的增量训练是模型增量识别的关键。为了解决这个问题,该文提出基于最大化非重合体积的样例挑选方法(ESMNV),一种侧重于分布非重合体积的样例选择算法。ESMNV将每个已知类的样例选择问题转化为分布非重合体积的渐近增长问题,旨在最大化所选样例的分布的非重合体积。ESMNV利用分布之间的相似性来表示体积之间的差异。首先,ESMNV使用核函数将目标类别的分布映射到重建核希尔伯特空间(RKHS),并使用高阶矩来表示分布。然后,它使用最大均值差异(MMD)来计算目标类别与所选样例分布之间的差异。最后,结合贪心算法,ESMNV逐步选择使样例分布与目标类别分布差异最小的样例,确保在有限数量的样例情况下最大化所选样例的非重合体积。
小样本SAR目标的双重一致性因果识别方法
王陈炜, 罗思懿, 黄钰林, 裴季方, 张寅, 杨建宇
2024, 46(10): 3928-3935.   doi: 10.11999/JEIT240140
[摘要](94) [HTML全文](33) [PDF 2041KB](15)
摘要:
在小样本条件下提升方法的泛化性能,是合成孔径雷达自动目标识别(SAR ATR)的重要研究方向。针对该方向中的基础理论问题,该文建立了一个SAR ATR因果模型,证明了SAR图像中背景、相干斑等干扰在充足样本条件下可以被忽略;但在小样本条件下,这些因素将成为识别中的混杂因子,在提取的SAR图像特征中引入虚假相关性,影响SAR ATR性能。为了甄别和消除这些特征中的虚假效应,该文提出一个基于双重一致性的小样本SAR ATR方法,其中双重一致性包括类内一致性掩码和效应一致性损失。首先,基于鉴别特征应具有类内一致和类间差异的原则,利用类内一致性掩码,捕获目标的类内一致鉴别特征,甄别出目标特征中的混淆部分,准确估计出干扰引入的虚假效应。其次,基于不变风险最小化的思想,利用效应一致性损失,将经验风险最小化数据量需求转变为对效应相似度的度量需求,降低虚假效应消除对数据量的需求,消除特征中的虚假效应。因而,所提基于双重一致性的小样本SAR ATR方法可实现特征提取中的真实因果,实现准确的识别性能。两个基准数据集上的识别实验,验证了该方法的合理性和有效性,可提升小样本条件下SAR目标识别的性能。
自监督解耦动态分类器的小样本类增量SAR图像目标识别
赵琰, 赵凌君, 张思乾, 计科峰, 匡纲要
2024, 46(10): 3936-3948.   doi: 10.11999/JEIT231470
[摘要](172) [HTML全文](199) [PDF 24287KB](53)
摘要:
为提升基于深度学习(DL)的合成孔径雷达自动目标识别(SAR ATR)系统在开放动态的非合作场景中对新类别目标的持续敏捷识别能力,该文研究了SAR ATR的小样本类增量学习(FSCIL)问题,并提出了自监督解耦动态分类器(SDDC)。针对FSCIL 中“灾难性遗忘”和“过拟合”本质难点和SAR ATR领域挑战,根据SAR图像目标信息的部件化与方位角敏感性特点,于图像域构建了基于散射部件混淆与旋转模块(SCMR)的自监督学习任务,以提升目标表征的泛化性与稳健性。同时,设计了类印记交叉熵(CI-CE)损失并以参数解耦学习(PDL)策略对模型动态微调,以对新旧知识平衡判别。实验在由MSTAR和SAR-AIRcraft-1.0数据集分别构建的覆盖多种目标类别、观测条件和成像平台的FSCIL场景上验证了该算法开放动态环境的适应能力。
基于频谱地图重构的辐射源识别
王雪刚, 王方刚, 王意卓
2024, 46(10): 3949-3956.   doi: 10.11999/JEIT240050
[摘要](290) [HTML全文](149) [PDF 4820KB](80)
摘要:
无线环境地图(REM)是呈现电磁态势的一种有效形式,考虑实际观测的不完整频谱地图受到干扰和噪声污染的问题,该文对频谱地图进行重构,并在此基础上完成辐射源识别。首先,将复杂电磁环境下的频谱地图建模为高维张量,在预处理中通过线性插值对其初始化补全。然后,使用视觉Transformer模型解决语义分割问题以识别频谱语义区域,区域中仅单一辐射源功率占主导,每个语义张量的低秩性得以保留。提出了一种压缩式张量分解算法,并采用交替方向乘子法(ADMM)在语义区域中重构期望信号频谱和干扰;最后,在重构的频谱地图上检测未知辐射源的位置。该方法能够充分利用频谱数据的低秩性,适用于广域多辐射源个体的电磁场景。实验结果表明,所提方法比现有方法具有更优的重构性能,降低了达到相同频谱地图恢复精度时对观测样本比例的要求,并能够准确检测辐射源。
通信干扰信道和功率智能决策算法
周成, 林茜, 马丛珊, 应涛, 满欣
2024, 46(10): 3957-3965.   doi: 10.11999/JEIT240100
[摘要](44) [HTML全文](16) [PDF 1484KB](11)
摘要:
智能干扰是一种利用环境反馈自主学习干扰策略,对敌方通信链路进行有效干扰的技术。然而,现有的智能干扰研究大多假设干扰机能够直接获取通信质量反馈(如误码率或丢包率),这在实际对抗环境中难以实现,限制了智能干扰的应用范围。为了解决这一问题,该文将通信干扰问题建模为马尔科夫决策过程(MDP),综合考虑干扰基本原则和通信目标行为变化制定干扰效能衡量指标,提出了一种改进的策略爬山算法(IPHC)。该算法按照“观察(Observe)-调整(Orient)-决策(Decide)-行动(Act)”的OODA闭环,实时观察通信目标变化,灵活调整干扰策略,运用混合策略决策,实施通信干扰。仿真结果表明,在通信目标采用确定性规避策略时,所提算法能够较快收敛到最优干扰策略,并且其收敛耗时较Q-learning算法至少缩短2/3;当通信目标变换策略时,能够自适应学习,重新调整到最优干扰策略。在通信目标采用混合性规避策略时,所提算法也能够快速收敛,取得较优的干扰效果。
接收域分离的跨接收系统通用性辐射源指纹识别
孙丽婷, 柳征, 黄知涛
2024, 46(10): 3966-3978.   doi: 10.11999/JEIT240171
[摘要](104) [HTML全文](37) [PDF 7427KB](14)
摘要:
受辐射源硬件失真和接收机硬件失真的耦合作用,实际接收信号中带有当前辐射源系统和接收系统共同的“个体信息”,导致辐射源指纹识别技术(RFF)在跨接收系统场景下无法通用。为消除接收机染色效应,该文将接收机影响作为单独作用域,提出一种基于接收域分离的跨接收系统通用性辐射源指纹识别方法。该方法通过双标签多通道特征联合和域分离对抗重构方式实现信号中辐射源指纹作用域与接收机染色作用域分离,利用多部接收机数据预先训练网络对两种作用域的分离能力,聚焦辐射源指纹信息提取,从而提升辐射源指纹识别技术在跨平台跨接收系统、更新接收设备等场景下的适应能力。相比于直接特征提取和多接收机打包训练方式,所提方法能够真正适应实际无监督场景,且参与训练的源域接收机数目越多,域适应效果越好,不需要重复训练即可直接推广应用于新接收系统,具有较高的实际应用价值。
面向遥感图像解译的增量深度学习
翁星星, 庞超, 许博文, 夏桂松
2024, 46(10): 3979-4001.   doi: 10.11999/JEIT240172
[摘要](756) [HTML全文](219) [PDF 4833KB](169)
摘要:
深度学习的发展推动了高精度遥感图像智能解译模型的涌现。然而,目前遥感智能解译模型大多基于预先定义的静态数据集独立训练,难以适应环境开放和需求动态的实际应用,严重阻碍了遥感智能解译模型的广域和长期运用。增量学习能使模型持续学习新知识,并保持对旧知识的记忆,近年来,被广泛应用于推动遥感智能解译模型演化、提升模型智能解译性能。该文面向多模态遥感数据、不同类型解译任务,全面调研了遥感图像智能解译增量学习方法,从遗忘问题解决思路、解译模型进化应用两个层面梳理了现有研究工作。在此基础上,从促进遥感图像解译模型进化研究的角度,展望和讨论了遥感领域增量学习的未来研究方向。
无线通信与物联网
可重构智能超表面辅助的大规模机器类通信深度学习大规模MIMO信道估计
刘婷, 王媛, 辛元雪
2024, 46(10): 4002-4008.   doi: 10.11999/JEIT240584
[摘要](160) [HTML全文](47) [PDF 2549KB](30)
摘要:
大规模机器类通信 (mMTC) 是第5代移动通信系统的重要应用场景之一,可实现每平方公里近百万级设备的连接。考虑到mMTC传播环境的复杂性,该文引入可重构智能超表面 (RIS) 进行上行免授权的传输,由此级联形成用户与RIS、RIS与基站 (BS) 之间的信道链路,从而有效控制无线信号传输的质量。在此基础上,建立Turbo译码消息传递思想下的降噪学习系统,通过大量的训练数据,以学习RIS辅助的级联信道状态信息,并对其进行估计。此外,该文对RIS辅助的mMTC信道估计结果进行了统计分析,以验证所提方案的准确性。数值仿真结果和理论分析结果表明,该文方法优于其他压缩感知类的方法。
支持无线采能及簇间负载均衡的无人机辅助数据调度及轨迹优化算法
柴蓉, 李沛欣, 梁承超, 陈前斌
2024, 46(10): 4009-4016.   doi: 10.11999/JEIT240048
[摘要](134) [HTML全文](36) [PDF 1714KB](18)
摘要:
该文研究了无人机(UAV)辅助无线传感器网络的数据收集问题。首先提出基于均值漂移算法的传感器节点(SN)初始分簇策略,进而以簇间负载均衡为目标,设计SN切换算法。基于所得成簇策略,将UAV数据收集及轨迹规划问题建模为系统能耗最小化问题。由于该问题是一个非凸问题,难以直接求解,将其分为两个子问题,即数据调度子问题及UAV轨迹规划子问题。针对数据调度子问题,提出一种基于多时隙库恩-蒙克雷斯算法的时频资源调度策略。针对UAV轨迹规划子问题,将其建模为马尔可夫决策过程,并提出一种基于深度Q网络的UAV轨迹规划算法。仿真结果验证了所提算法的有效性。
强干扰环境下无速率随机码编译码方案及其性能分析
王义文, 王千帆, 马啸
2024, 46(10): 4017-4023.   doi: 10.11999/JEIT230879
[摘要](114) [HTML全文](36) [PDF 3336KB](14)
摘要:
面向强干扰通信环境,区别于传统的无速率Luby变换(LT)码,该文提出一种基于伯努利随机构造的无速率编码方案,并在接收端采用高效的局部约束顺序统计量译码(LC-OSD)算法进行译码,从而有效对抗强干扰噪声,实现自适应超高可靠传输。为降低收发端通信资源消耗,提出了3个有效译码准则:(1) 基于随机码并集(RCU)界提出的启动准则,当接收符号数大于由RCU得到的阈值时才启动译码;(2) 基于软重量提出的早停准则,在译码过程中软重量超过一个预设的阈值则提前终止译码;(3) 基于码字与硬判决序列比较提出的跳过准则,当新接收序列的硬判决满足重编码校验时跳过当前译码。仿真结果显示,在块删除与加性噪声混合信道下,无速率随机码的性能显著优于LT码,且因无速率码具备自适应信道质量的能力,其性能同样显著优于固定速率码。仿真结果还显示了提出的启动、早停和跳过准则能够有效降低收发端的传输资源消耗和计算复杂度。
信息年龄约束下的无人机数据采集能耗优化路径规划算法
高思华, 刘宝煜, 惠康华, 徐伟峰, 李军辉, 赵炳阳
2024, 46(10): 4024-4034.   doi: 10.11999/JEIT240075
[摘要](137) [HTML全文](26) [PDF 2426KB](15)
摘要:
信息年龄(AoI)是评价无线传感器网络(WSN)数据时效性的重要指标,无人机辅助WSN数据采集过程中采用优化飞行轨迹、提升速度等运动策略保障卸载至基站的数据满足各节点AoI限制。然而,不合理的运动策略易导致无人机因飞行距离过长、速度过快产生非必要能耗,造成数据采集任务失败。针对该问题,该文首先提出信息年龄约束的无人机数据采集能耗优化路径规划问题并进行数学建模;其次,设计一种协同混合近端策略优化(CH-PPO)强化学习算法,同时规划无人机对传感器节点或基站的访问次序、悬停位置和飞行速度,在满足各传感器节点信息年龄约束的同时,最大限度地减少无人机能量消耗。再次,设计一种融合离散和连续策略的损失函数,增强CH-PPO算法动作的合理性,提升其训练效果。仿真实验结果显示,CH-PPO算法在无人机能量消耗以及影响该指标因素的比较中均优于对比的3种强化学习算法,并具有良好的收敛性、稳定性和鲁棒性。
雷达与导航
利用伯努利滤波的多目标机动雷达误差配准方法
邓洪高, 余润华, 纪元法, 吴孙勇, 孙希延
2024, 46(10): 4035-4043.   doi: 10.11999/JEIT240013
[摘要](55) [HTML全文](23) [PDF 2403KB](8)
摘要:
传统的组网雷达多目标误差配准方法通常假设数据关联关系已知,但在平台机动的情况下,系统同时存在雷达测量偏差和平台姿态角偏差,且雷达观测过程中会受到杂波干扰,导致数据关联尤为困难。针对这一问题,该文提出一种基于伯努利滤波的多目标机动雷达误差配准方法。首先建立系统偏差的量测与状态方程,然后将系统偏差建模成伯努利随机有限集,利用公共坐标系下的原始量测可实现系统偏差在伯努利滤波框架下的递推估计,有效避免了数据关联问题。同时,为了充分利用多目标量测信息,提出一种修正的贪婪量测划分方法,在每个滤波时刻挑选出系统偏差对应的最优量测子集,利用量测子集中的多量测信息实现系统偏差的集中式融合估计,提高了系统偏差的估计精度和收敛速度。仿真实验表明,所提方法能够在数据关联未知的多目标多杂波场景下对雷达测量偏差和平台姿态角偏差进行有效估计,在平台姿态角变化率较低时,所提方法具有较强的适应性。
改进变分模态分解与多特征的通信辐射源个体识别方法
刘高辉, 席宏恩
2024, 46(10): 4044-4052.   doi: 10.11999/JEIT231348
[摘要](92) [HTML全文](30) [PDF 3152KB](13)
摘要:
针对通信辐射源指纹特征难以提取和单一特征识别率不高的问题,并考虑到通信辐射源细微特征的非线性、非平稳特点,该文提出了一种基于改进变分模态分解和多特征的通信辐射源个体识别方法。首先,为了获得变分模态分解的分解层数和惩罚因子的最优组合,采用鲸鱼优化算法对通信辐射源符号波形信号的变分模态分解方法进行了改进,该方法以序列复杂度为停止准则,使每个符号波形信号能够自适应地分解出包含非线性指纹特征的高频信号分量和数据信息的低频分量;然后,根据相关阈值选取能够最佳表征辐射源非线性特征的高频信号分量层数,分别对其提取模糊熵、排列熵、Higuchi维数以及Katz维数并组成多域联合特征向量;最后,通过卷积神经网络实现通信辐射源个体识别分类,利用ORACLE公开数据集进行实验。实验结果表明:该方法有较高的识别精度且具有良好的抗噪声性能。
利用部分可信信号的导航终端欺骗干扰检测方法
王环宇, 林红磊, 欧钢, 唐小妹
2024, 46(10): 4053-4061.   doi: 10.11999/JEIT240067
[摘要](86) [HTML全文](36) [PDF 4225KB](15)
摘要:
导航信号认证服务处于初步部署阶段,认证信号对地覆盖重数无法满足独立定位授时需求,现有研究对这一阶段利用部分通过认证的信号,即可信信号,实现欺骗检测的方法关注度较低。针对这一现状,该文根据欺骗攻击原理,提出以可信信号为基准,基于可信信号伪距残差的欺骗检测方法,建立该场景下的欺骗检测模型,并分析影响所提方法检测性能的因素。经过仿真,在可信卫星数目为3颗、用户定位精度约10 m条件下,当欺骗导致的定位偏差为100 m时,该方法的平均欺骗检测概率可达0.96。此外,该文对算法欺骗检测盲区进行了分析,证明所提算法对于绝大部分欺骗导致的定位结果均有效。
图像与智能信息处理
一种基于人体轮廓形变场的双流网络步态识别方法
霍威, 王科, 唐俊, 王年, 梁栋
2024, 46(10): 4062-4071.   doi: 10.11999/JEIT231025
[摘要](107) [HTML全文](42) [PDF 3803KB](20)
摘要:
步态识别易受相机视角、服装和携带物等外界因素影响而性能下降。为此,该文将非刚性点集配准引入步态识别,利用相邻步态帧之间的形变场表征行走过程中人体轮廓发生的位移量,从而提升对人体形态变化的动态感知能力。在此基础上,该文提出一种基于人体轮廓形变场的双流卷积神经网络GaitDef,该网络模型由形变场和步态剪影两路特征提取分支构成。针对形变场数据的稀疏性设计多尺度特征提取模块,以获取形变场的多层次空间结构信息。针对步态剪影提出动态差异捕捉模块和上下文信息增强模块,以捕捉动态区域的变化特性和利用上下文信息增强步态表征能力。双分支网络的输出特征经过特征融合得到最终的步态表示。大量实验结果表明了该文方法的有效性,在CASIA-B和CCPG数据集上,该文方法的平均Rank-1准确率分别能达到93.5%和68.3%。
电路与系统设计
两种面向宇航应用的高可靠性抗辐射加固技术静态随机存储器单元
闫爱斌, 李坤, 黄正峰, 倪天明, 徐辉
2024, 46(10): 4072-4080.   doi: 10.11999/JEIT240082
[摘要](159) [HTML全文](52) [PDF 9428KB](26)
摘要:
CMOS尺寸的大幅缩小引发电路可靠性问题。该文介绍了两种高可靠的基于设计的抗辐射加固(RHBD)10T和12T抗辐射加固技术(SRAM)单元,它们可以防护单节点翻转(SNU)和双节点翻转(DNU)。10T单元主要由两个交叉耦合的输入分离反相器组成,该单元可以通过其内部节点之间的反馈机制稳定地保持存储的值。由于仅使用少量晶体管,因此其在面积和功耗方面开销也较低。基于10T单元,提出了使用4个并行存取访问管的12T单元。与10T单元相比,12T单元的读/写访问时间更短,且具有相同的容错能力。仿真结果表明,所提单元可以从任意SNU和部分DNU中恢复。此外,与先进的加固SRAM单元相比,所提RHBD 12T单元平均可以节省16.8%的写访问时间、56.4%的读访问时间和10.2%的功耗,而平均牺牲了5.32%的硅面积。
编辑部公告
more >
学术动态
more >
作者服务中心
融媒体平台
more >
友情链接
more >

官方微信,欢迎关注

电子与信息学报

微信学术论坛群