高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能反射面辅助无线网络性能及最优位置分析

束锋 赖斯豪 刘川 高炜 董榕恩 王艳

束锋, 赖斯豪, 刘川, 高炜, 董榕恩, 王艳. 智能反射面辅助无线网络性能及最优位置分析[J]. 电子与信息学报. doi: 10.11999/JEIT240488
引用本文: 束锋, 赖斯豪, 刘川, 高炜, 董榕恩, 王艳. 智能反射面辅助无线网络性能及最优位置分析[J]. 电子与信息学报. doi: 10.11999/JEIT240488
SHU Feng, LAI Sihao, LIU Chuan, GAO Wei, DONG Rongen, WANG Yan. Performance and Optimal Placement Analysis of Intelligent Reflecting Surface-assisted Wireless Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240488
Citation: SHU Feng, LAI Sihao, LIU Chuan, GAO Wei, DONG Rongen, WANG Yan. Performance and Optimal Placement Analysis of Intelligent Reflecting Surface-assisted Wireless Networks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240488

智能反射面辅助无线网络性能及最优位置分析

doi: 10.11999/JEIT240488
基金项目: 国家重点研发计划(2023YFF0612900),国家自然科学基金(U22A2002, 62071234),海南省科技专项基金(ZDKJ2021022),海南大学科研启动项目(KYQD(ZR)-21008),海南大学信息技术协同创新中心项目(XTCX2022XXC07)
详细信息
    作者简介:

    束锋:男,博士生导师,研究方向为智能无线通信、信息安全、大规模MIMO测向等

    赖斯豪:男,硕士生,研究方向为IRS辅助的无线通信

    刘川:男,博士,研究方向为能源数字化、电力通信网路

    高炜:男,博士后,网络架构、无线网络接入和无线电资源分配

    董榕恩:女,博士,研究方向为方向调制、IRS辅助的无线网络

    王艳:女,博士生,研究方向为IRS辅助的通信系统

    通讯作者:

    董榕恩 dre2000@163.com

  • 中图分类号: TN92

Performance and Optimal Placement Analysis of Intelligent Reflecting Surface-assisted Wireless Networks

Funds: The National Key Research and Development Program of China (2023YFF0612900), The National Natural Science Foundation of China (U22A2002, 62071234), Hainan Province Science and Technology Special Fund (ZDKJ2021022), The Scientific Research Fund Project of Hainan University (KYQD(ZR)-21008), The Collaborative Innovation Center of Information Technology, Hainan University (XTCX2022XXC07)
  • 摘要: 当基站(BS)和用户的位置固定,基站到智能反射面(IRS)与IRS到用户的距离和一定时,该文在视距信道和瑞利信道下基于最大化系统可达速率准则对无源和有源IRS的最优放置位置进行分析。首先,运用相位对齐和大数定律推导了无源和有源IRS辅助无线网络可达速率的闭合表达式;然后,分析了基站到IRS的路径损耗指数${\beta _1}$和IRS到用户的路径损耗指数${\beta _2}$对IRS最优部署位置的影响,即当${\beta _{\text{1}}} \gt {\beta _{\text{2}}}$时,无源IRS的最优部署位置始终靠近基站,随着${\beta _1}$和${\beta _2}$的差距逐渐增大,有源IRS的最优部署位置逐渐靠近基站;当${\beta _1} \lt {\beta _2}$时,则得到相反的结论。仿真结果表明:当${\beta _1} = {\beta _2}$且无源IRS到基站和到用户的距离相等时,系统的可达速率性能最差。当固定有源IRS处的噪声功率且增加用户处的噪声功率时,IRS的最优部署位置始终靠近用户;当固定后者增大前者时,IRS的最优部署位置逐渐靠近基站。
  • 图  1  系统模型图

    图  2  系统可达速率与IRS部署位置的关系曲线图

    图  3  IRS最优部署位置与路径损耗曲线图

    图  4  有源IRS的最优部署位置随反射功率${P_{\text{I}}}$变化曲线图

    图  5  在不同$\sigma _{\text{I}}^2$和$\sigma _{\text{U}}^2$情形下系统可达速率随基站到有源IRS的距离$r$变化的关系曲线图。

    表  1  路径损耗指数设置表

    无源IRS 有源IRS
    ${\beta _1}$ ${\beta _2}$ ${\beta _1}$ ${\beta _2}$
    ${\beta _1} \gt {\beta _2}$ 3.0 2.2 3.5 2.5
    ${\beta _1} = {\beta _2}$ 2.2 2.2 2.5 2.5
    ${\beta _1} \lt {\beta _2}$ 2.2 3.0 2.5 3.5
    下载: 导出CSV
  • [1] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
    [2] 朱秋明, 倪浩然, 华博宇, 等. 无人机毫米波信道测量与建模研究综述[J]. 移动通信, 2022, 46(12): 2–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.

    ZHU Qiuming, NI Haoran, HUA Boyu, et al. A survey of UAV millimeter-wave channel measurement and modeling[J]. Mobile Communications, 2022, 46(12): 2–11. doi: 10.3969/j.issn.1006-1010.20221114-0001.
    [3] ZHENG Beixiong, YOU Changsheng, MEI Weidong, et al. A survey on channel estimation and practical passive beamforming design for intelligent reflecting surface aided wireless communications[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 1035–1071. doi: 10.1109/COMST.2022.3155305.
    [4] WANG Xuehui, SHU Feng, SHI Weiping, et al. Beamforming design for IRS-aided decode-and-forward relay wireless network[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(1): 198–207. doi: 10.1109/TGCN.2022.3145031.
    [5] 张在琛, 江浩. 智能超表面使能无人机高能效通信信道建模与传输机理分析[J]. 电子学报, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.

    ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy-efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
    [6] DONG Limeng and WANG Huiming. Enhancing secure MIMO transmission via intelligent reflecting surface[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7543–7556. doi: 10.1109/TWC.2020.3012721.
    [7] ZHENG Beixiong and ZHANG Rui. Simultaneous transmit diversity and passive beamforming with large-scale intelligent reflecting surface[J]. IEEE Transactions on Wireless Communications, 2023, 22(2): 920–933. doi: 10.1109/TWC.2022.3199426.
    [8] YU Xianghao, JAMALI V, XU Dongfang, et al. Smart and reconfigurable wireless communications: From IRS modeling to algorithm design[J]. IEEE Wireless Communications, 2021, 28(6): 118–125. doi: 10.1109/MWC.001.2100145.
    [9] WEI Wenjing, PANG Xiaowei, TANG Jie, et al. Secure transmission design for aerial IRS assisted wireless networks[J]. IEEE Transactions on Communications, 2023, 71(6): 3528–3540. doi: 10.1109/TCOMM.2023.3257387.
    [10] PAPAZAFEIROPOULOS A, PAN Cunhua, ELBIR E, et al. Coverage probability of distributed IRS systems under spatially correlated channels[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1722–1726. doi: 10.1109/LWC.2021.3077991.
    [11] ZENG Piao, QIAO Deli, WU Qingqing, et al. Throughput maximization for active intelligent reflecting surface-aided wireless powered communications[J]. IEEE Wireless Communications Letters, 2022, 11(5): 992–996. doi: 10.1109/LWC.2022.3152563.
    [12] MIAO Jiansong, LI Tongjie, BAI Shanling, et al. Secrecy capacity enhancement in active IRS-assisted UAV communication system[J]. Sensors, 2023, 23(9): 4377. doi: 10.3390/s23094377.
    [13] LI Yunli, YOU Changsheng, and CHUN Y J. Active-IRS aided wireless network: System modeling and performance analysis[J]. IEEE Communications Letters, 2023, 27(2): 487–491. doi: 10.1109/LCOMM.2022.3221116.
    [14] GE Yimeng, FAN Jiancun, LI G Y, et al. Intelligent reflecting surface-enhanced UAV communications: Advances, challenges, and prospects[J]. IEEE Wireless Communications, 2023, 30(6): 119–126. doi: 10.1109/MWC.008.2200124.
    [15] SHI Weiping, WU Qingqing, WU Di, et al. Joint transmit and reflective beamforming design for active IRS-aided SWIPT systems[J]. Chinese Journal of Electronics, 2024, 33(2): 536–548. doi: 10.23919/cje.2022.00.287.
    [16] LONG Ruizhe, LIANG Yingchang, PEI Yiyang, et al. Active reconfigurable intelligent surface-aided wireless communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(8): 4962–4975. doi: 10.1109/TWC.2021.3064024.
    [17] DI RENZO M, NTONTIN K, SONG Jian, et al. Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison[J]. IEEE Open Journal of the Communications Society, 2020, 1: 798–807. doi: 10.1109/OJCOMS.2020.3002955.
    [18] YANG Liang, YANG Yin, HASNA M O, et al. Coverage, probability of SNR gain, and DOR analysis of RIS-aided communication systems[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1268–1272. doi: 10.1109/LWC.2020.2987798.
    [19] DONG Rongen, TENG Yin, SUN Zhongwen, et al. Performance analysis of wireless network aided by discrete-phase-shifter IRS[J]. Journal of Communications and Networks, 2022, 24(5): 603–612. doi: 10.23919/JCN.2022.000029.
    [20] KANG Zhenyu, YOU Changsheng, and ZHANG Rui. IRS-aided wireless relaying: Deployment strategy and capacity scaling[J]. IEEE Wireless Communications Letters, 2022, 11(2): 215–219. doi: 10.1109/LWC.2021.3123075.
    [21] YOU Changsheng and ZHANG Rui. Wireless communication aided by intelligent reflecting surface: Active or passive?[J]. IEEE Wireless Communications Letters, 2021, 10(12): 2659–2663. doi: 10.1109/LWC.2021.3111044.
    [22] WASSERMAN L. All of Statistics: A Concise Course in Statistical Inference[M]. New York: Springer-Verlag, 2004.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  41
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-16
  • 修回日期:  2024-09-24
  • 网络出版日期:  2024-09-28

目录

    /

    返回文章
    返回