当前状态:
, 最新更新时间: ,
doi: 10.11999/JEIT250343
摘要:
受电弓-接触网系统的耦合性能是影响高速列车受流稳定性和整体运行效率的关键因素。该文旨在提出一种能应对复杂工况的主动控制策略,以降低弓网接触力波动。然而,现有主流方法各有瓶颈,如强化学习存在样本效率低、易陷入局部最优的问题,而模型预测控制则受限于短期优化视野。为融合二者优势,该文提出一种基于强化学习指导模型预测控制(RL-GMPC)的受电弓主动控制算法。首先,建立有限元弓网耦合模型,用于生成多工况弓网交互数据;其次,基于强化学习框架提出一种自适应潜在动力学模型,其从弓网交互数据中学习系统动力学世界模型,并基于时序差分思想训练状态价值函数;进一步,提出一种基于强化学习指导的模型预测控制框架,其在滚动时域内使用学习的动力学模型进行局部轨迹优化,并使用学习的终端状态价值函数来估计轨迹末端状态的预期累计奖励。实现了短期累计奖励回报和长期奖励估计的有效结合。最后对算法进行了有效性测试和鲁棒性分析,实验结果表明,在京沪线运行条件下,基于RL-GMPC算法对受电弓进行主动控制,列车在290, 320, 350和380 km/h工况下的接触力标准差分别降低了14.29%, 18.07%, 21.52%和34.87%,有效抑制了接触力波动。另外,该文算法在面对随机风扰动及接触网线路参数变化时也表现出优异的鲁棒性。