高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双RIS辅助的MISO系统吞吐量最大化研究

谢文武 张沁可 梁锡涛 刘晨宇 余超 王骥

谢文武, 张沁可, 梁锡涛, 刘晨宇, 余超, 王骥. 双RIS辅助的MISO系统吞吐量最大化研究[J]. 电子与信息学报. doi: 10.11999/JEIT240612
引用本文: 谢文武, 张沁可, 梁锡涛, 刘晨宇, 余超, 王骥. 双RIS辅助的MISO系统吞吐量最大化研究[J]. 电子与信息学报. doi: 10.11999/JEIT240612
XIE Wenwu, ZHANG Qinke, LIANG Xitao, LIU Chenyu, YU Chao, WANG Ji. Throughput Maximization for Double RIS-Assisted MISO Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240612
Citation: XIE Wenwu, ZHANG Qinke, LIANG Xitao, LIU Chenyu, YU Chao, WANG Ji. Throughput Maximization for Double RIS-Assisted MISO Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240612

双RIS辅助的MISO系统吞吐量最大化研究

doi: 10.11999/JEIT240612
基金项目: 国家自然科学基金 (62472169),湖南省自然科学基金(2023JJ50045, 2024JJ7218, 2024JJ7219),湖南省教育厅项目(22B0676, 23C0217),湖南省大学生创新创业项目(S202410543061)
详细信息
    作者简介:

    谢文武:男,副教授,研究方向为5G&6G基带算法、NFC等

    张沁可:女,硕士生,研究方向为RIS、凸优化

    梁锡涛:男,硕士生,研究方向为5G/6G无线通信

    刘晨宇:男,硕士生,研究方向为RIS、凸优化

    余超:男,讲师,研究方向为NOMA、凸优化

    王骥:男,副教授,研究方向为5G/6G无线通信

    通讯作者:

    余超 12012017@hnist.edu.cn

  • 中图分类号: TN911

Throughput Maximization for Double RIS-Assisted MISO Systems

Funds: The National Natural Science Foundation of China (62472169), Hunan Provincial Natural Science Foundation (2023JJ50045, 2024JJ7218, 2024JJ7219), The Project of Education Bureau of Hunan Province (22B0676, 23C0217), Hunan Provincial College Students Innovation and Entrepreneurship-Project: (S202410543061)
  • 摘要: 近年来,有源可重构智能表面(ARIS)技术获得了学术界的广泛关注。然而,ARIS在多RIS辅助无线通信系统中的应用还缺乏相关研究。针对此问题,该文提出基于双RIS辅助的无线通信系统模型。模型假设基站(BS)和用户之间的直连链路受阻,仅通过RIS形成的反射链路进行通信。在此基础上,根据ARIS与被动RIS(PRIS)的不同组合情况,提出4种RIS组合模型。模型的目标是优化基站波束赋形、RIS的相移矩阵和功率分配因子,以最大化系统通信容量。由于该优化问题为非凸问题,该文采用了交替优化算法(AO)与连续凸逼近(SCA)对问题进行处理。仿真结果表明,无论基站发射功率高或低,TAAR组合模型的性能均显著优于传统单ARIS配置。
  • 图  1  双RIS辅助单用户场景下无线通信系统模型

    图  2  不同组合模型下不同放大功率$a_{\max }^2$的系统容量

    图  3  不同发射功率$P$的系统容量

    1  基于AO算法的信道对齐流程

     (1) 初始化参数${{\theta}} _1^{(0)}$, ${{\theta}} _2^{(0)}$, ${{\mathbf{\omega }}^{(0)}}$迭代数$n = 0$,收敛门限$\varepsilon $
     (2) 利用初始参数计算$ \gamma _{{\text{TPPR}}}^n $的值
     (3) 迭代开始:
     (4)  固定${{\theta} _2}$, ${\mathbf{\omega }}$,求解式(15)得到${{\theta} _1}$
     (5)  固定${{\theta} _1}$, ${\mathbf{\omega }}$,求解式(16)得到${{\theta} _2}$
     (6)  固定${{\theta} _1}$,${{\theta} _2}$,求解式(17)得到${\mathbf{\omega }}$
     (7)  使用${{\theta} _1}$,${{\theta} _2}$, ${\mathbf{\omega }}$,计算$\gamma _{{\text{TPPR}}}^{n + 1}$的值
     (8)   判断$\left| {\gamma _{{\text{TPPR}}}^{n + 1} - \gamma _{{\text{TPPR}}}^n} \right| \le \varepsilon $或$n \ge 100$是否成立,若不满
         足条件,$n = n + 1$返回步骤4
     (9) 结束循环
     (10) 得到最优解${{\theta} _1}$, ${{\theta} _2}$, ${\mathbf{\omega }}$
    下载: 导出CSV

    2  基于SCA的AO算法流程

     (1) 初始化参数${\theta} _1^{(0)}$, ${\theta} _2^{(0)}$, ${{\mathbf{\omega }}^{(0)}}$, ${\tau _0}$, ${\kappa _0}$,迭代数$n = 0$,收敛
     门限$\varepsilon $
     (2) 计算$\gamma _{{\text{TAPR}}}^n$的值
     (3) 迭代开始:
     (4)  固定${{\theta} _2}$, ${\mathbf{\omega }}$,求解问题(P2.1),将解进行高斯随机化后得到
        ${\theta} _1^{n + 1}$
     (5)  固定${{\theta} _1}$, ${\mathbf{\omega }}$,求解问题(P2.2),将解进行高斯随机化后得到
        ${\theta} _2^{n + 1}$
     (6)  固定${{\theta} _1}$, ${{\theta} _2}$,求解问题(P2.3)得到${{\mathbf{\omega }}^{n + 1}}$
     (7)   使用${\theta} _1^{n + 1}$, ${\theta} _2^{n + 1}$,${{\mathbf{\omega }}^{n + 1}}$,计算$\gamma _{{\text{TAPR}}}^{n + 1}$的值
     (8)    判断收敛条件$\left| {\gamma _{{\text{TAPR}}}^{n + 1} - \gamma _{{\text{TAPR}}}^n} \right| \le \varepsilon $或$n \ge 100$是否成
          立,若满足条件,迭代结束,否则,$n = n + 1$返回步
          骤4
     (9) 得到最优解${{\theta} _1}$, ${{\theta} _2}$, ${\mathbf{\omega }}$
    下载: 导出CSV
  • [1] SIDDIQI M Z and MIR T. Reconfigurable intelligent surface-aided wireless communications: An overview[J]. Intelligent and Converged Networks, 2022, 3(1): 33–63. doi: 10.23919/ICN.2022.0007.
    [2] 张力康, 杜清河, 卢忱, 等. 面向6G的RIS辅助通信系统的信道估计技术[J]. 移动通信, 2024, 48(6): 75–80. doi: 10.3969/j.issn.1006-1010.20240425-0002.

    ZHANG Likang, DU Qinghe, LU Chen, et al. Overview of channel estimation for reconfigurable intelligent surface-assisted communications towards 6G system[J]. Mobile Communications, 2024, 48(6): 75–80. doi: 10.3969/j.issn.1006-1010.20240425-0002.
    [3] JIANG Hao, ZHANG Zaichen, XIONG Baiping, et al. A 3D stochastic channel model for 6G wireless double-IRS cooperatively assisted MIMO communications[C]. Proceedings of 2021 13th International Conference on Wireless Communications and Signal Processing, Changsha, China, 2021. doi: 10.1109/WCSP52459.2021.9613605.
    [4] GORTY V K. Channel estimation for double IRS assisted broadband single-user SISO communication[C]. Proceedings of 2022 IEEE International Conference on Signal Processing and Communications, Bangalore, India, 2022: 1–5. doi: 10.1109/SPCOM55316.2022.9840513.
    [5] ZHENG Beixiong, YOU Changsheng, and ZHANG Rui. Efficient channel estimation for double-IRS aided multi-user MIMO system[J]. IEEE Transactions on Communications, 2021, 69(6): 3818–3832. doi: 10.1109/TCOMM.2021.3064947.
    [6] BAZZI S and XU Wen. IRS parameter optimization for channel estimation MSE minimization in double-IRS aided systems[J]. IEEE Wireless Communications Letters, 2022, 11(10): 2170–2174. doi: 10.1109/LWC.2022.3196126.
    [7] YOU Changsheng, ZHENG Beixiong, and ZHANG Rui. Wireless communication via double IRS: Channel estimation and passive beamforming designs[J]. IEEE Wireless Communications Letters, 2021, 10(2): 431–435. doi: 10.1109/LWC.2020.3034388.
    [8] HAN Yitao, ZHANG Shuowen, DUAN Lingjie, et al. Cooperative double-IRS aided communication: Beamforming design and power scaling[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1206–1210. doi: 10.1109/LWC.2020.2986290.
    [9] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025.
    [10] HAN Yitao, ZHANG Shuowen, DUAN Lingjie, et al. Double-IRS aided MIMO communication under LoS channels: Capacity maximization and scaling[J]. IEEE Transactions on Communications, 2022, 70(4): 2820–2837. doi: 10.1109/TCOMM.2022.3151893.
    [11] ZHENG Beixiong, YOU Changsheng, and ZHANG Rui. Double-IRS assisted multi-user MIMO: Cooperative passive beamforming design[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4513–4526. doi: 10.1109/TWC.2021.3059945.
    [12] DING Gengfa, YANG Feng, DING Lianghui, et al. Analysis and optimization of a double-IRS cooperatively assisted system with a quasi-static phase shift design[J]. IEEE Transactions on Wireless Communications, 2023, 22(7): 4416–4433. doi: 10.1109/TWC.2022.3225474.
    [13] KUMAR C and KASHYAP S. On the power transfer efficiency and feasibility of wireless energy transfer using double IRS[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6165–6180. doi: 10.1109/TVT.2022.3231636.
    [14] FU Min and ZHANG Rui. Active and passive IRS jointly aided communication: Deployment design and achievable rate[J]. IEEE Wireless Communications Letters, 2023, 12(2): 302–306. doi: 10.1109/LWC.2022.3224457.
    [15] LI Xinhao, YOU Changsheng, KANG Zhenyu, et al. Double-active-IRS aided wireless communication with total amplification power constraint[J]. IEEE Communications Letters, 2023, 27(10): 2817–2821. doi: 10.1109/LCOMM.2023.3298070.
    [16] KANG Zhenyu, YOU Changsheng and ZHANG Rui. Double-active-IRS aided wireless communication: Deployment optimization and capacity scaling[J]. IEEE Wireless Communications Letters, 2023, 12(11): 1821–1825. doi: 10.1109/LWC.2023.3294258.
    [17] NGUYEN T A, NGUYEN H V, DO D T, et al. Performance analysis of downlink double-IRS systems relying on non-orthogonal multiple access[J]. IEEE Access, 2023, 11: 110208–110220. doi: 10.1109/ACCESS.2023.3322373.
    [18] HU Xiaoling, ZHONG Caijun, ZHANG Yu, et al. Location information aided multiple intelligent reflecting surface systems[J]. IEEE Transactions on Communications, 2020, 68(12): 7948–7962. doi: 10.1109/TCOMM.2020.3020577.
    [19] TEJAS K S, UDAYKUMAR M, VARUN R, et al. Intelligent reflecting surface assisted wireless communication for coverage enhancement[C]. Proceedings of 2023 International Conference on Smart Systems for applications in Electrical Sciences, Tumakuru, India, 2023. doi: 10.1109/ICSSES58299.2023.10200009.
    [20] 王丹, 陈小梦, 王勇芳. 可重构智能表面辅助无线通信的用户分配[J]. 电子与信息学报, 2022, 44(7): 2425–2430. doi: 10.11999/JEIT211473.

    WANG Dan, CHEN Xiaomeng, and WANG Yongfang. User assignment for wireless communication assisted by reconfigurable intelligent surfaces[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2425–2430. doi: 10.11999/JEIT211473.
    [21] 王华华, 孙宸, 朱鹏云. 可重构智能表面辅助双功能雷达通信系统的联合波束优化[J]. 电子与信息学报, 2024, 46(1): 222–228. doi: 10.11999/JEIT221537.

    WANG Huahua, SUN Chen, and ZHU Pengyun. Joint beamforming optimization for RIS-assisted dual-functional radar-communication systems[J]. Journal of Electronics & Information Technology, 2024, 46(1): 222–228. doi: 10.11999/JEIT221537.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-17
  • 修回日期:  2024-11-15
  • 网络出版日期:  2024-11-29

目录

    /

    返回文章
    返回