Throughput Maximization for Double RIS-Assisted MISO Systems
-
摘要: 近年来,有源可重构智能表面(ARIS)技术获得了学术界的广泛关注。然而,ARIS在多RIS辅助无线通信系统中的应用还缺乏相关研究。针对此问题,该文提出基于双RIS辅助的无线通信系统模型。模型假设基站(BS)和用户之间的直连链路受阻,仅通过RIS形成的反射链路进行通信。在此基础上,根据ARIS与被动RIS(PRIS)的不同组合情况,提出4种RIS组合模型。模型的目标是优化基站波束赋形、RIS的相移矩阵和功率分配因子,以最大化系统通信容量。由于该优化问题为非凸问题,该文采用了交替优化算法(AO)与连续凸逼近(SCA)对问题进行处理。仿真结果表明,无论基站发射功率高或低,TAAR组合模型的性能均显著优于传统单ARIS配置。Abstract:
Objective With the continuous advancement of research on Reconfigurable Intelligent Surfaces (RIS), various application scenarios have emerged. Among these, Active Reconfigurable Intelligent Surfaces (ARIS) attracts significant attention from the academic community. While some studies focus on dual Passive RIS-assisted communication systems, others investigate dual RIS-assisted systems incorporating ARIS. Existing literature consistently demonstrates that dual RIS configurations outperform single RIS setups in terms of achievable Signal-to-Noise Ratio (SNR), power gain, and energy transfer efficiency, with dual RIS systems achieving approximately ten times higher energy transfer efficiency.However, most existing studies on RIS focus on optimizing the performance of reflection coefficients in one or more distributed RIS-aided systems, primarily serving users within their respective coverage areas, without sufficiently addressing the benefits of single-reflection links. While dual RIS systems can effectively mitigate the limitations of antenna numbers and improve transmission reliability and efficiency, single-reflection links can still significantly enhance channel capacity, especially under low transmission power conditions. This paper proposes a novel approach wherein dual-reflection links and two single-reflection links jointly serve users. The goal is to maximize the downlink capacity of dual RIS-assisted Multiple-Input Single-Output (MISO) systems by strategically configuring the interaction between the two RISs. Methods In this paper, four combinatorial models of RIS are investigated: the Transmitter-PRIS PRIS-Receiver (TPPR), Transmitter-ARIS PRIS-Receiver (TAPR), Transmitter-PRIS ARIS-Receiver (TPAR), and Transmitter-ARIS ARIS-Receiver (TAAR). The optimization objective of all models is to maximize the communication rate by optimizing the antenna beamforming vector of the base station and the phase shift matrix of the RIS. Due to the coupling of the three variables in the objective function, the model is non-convex, making it difficult to obtain an optimal solution. To address the coupling problem, the Alternating Optimization (AO) algorithm is employed, where one phase shift vector is fixed while the other is optimized alternately. To tackle the non-convex problem, SCA is applied to iteratively approximate the optimal solution by solving a series of convex subproblems. Results and Discussions Building on the research methods outlined above and employing the SCA and AO algorithms, experimental results are obtained. The system capacity of each combination model increases with rising amplification power ( Fig. 2 ). However, once the amplification factor reaches a certain threshold, the capacity curves of all models begin to flatten due to the constraints imposed by the maximum amplification power.Further demonstration of the system capacity performance of different combination models as transmit power increases is shown in (Fig. 3 ). Across all dual-RIS combination models, system capacity improves with higher transmit power and outperforms the Single-Active model in all scenarios.In (Fig. 3(a) ), under low transmit power conditions, regions of the curves corresponding to higher amplification power overlap due to the constraint of the amplification factor. As transmit power increases, system capacity stabilizes, which can be attributed to the proximity of ARIS to the base station, allowing it to receive stronger signals. Under high transmit power, system capacity continues to improve due to the influence of PRIS. Unlike ARIS, PRIS reflects the optimized signal path without being constrained by amplification power. Consequently, as transmit power increases, the signal strength received by PRIS is enhanced.In (Fig. 3(b) ), system capacity increases with transmit power, showing trends similar to those in (Fig. 3(a) ). In the TPAR combined model, the amplification factor constraint dominates, causing the system capacity curves to exhibit similar behavior across different amplification power levels. Under low transmit power, the signal strength at ARIS does not exceed the maximum amplification power budget. As transmit power increases, the amplification power constraint increasingly affects system capacity, leading to a gradual slowdown in the curve’s upward trend until it flattens. At high transmit power levels, the system capacity curve of the TPAR model levels off due to the low signal strength received by ARIS when it is positioned farther from the base station. This positioning necessitates higher transmit power to overcome the amplified power constraint. Thus, it is recommended that ARIS be deployed as close to the user as possible.In (Fig. 3(c) ), the TAAR combined model leverages the characteristics of both ARIS and PRIS in a dual ARIS-assisted scenario. Under low transmit power conditions, significant capacity gains are achieved. However, at high transmit power, the system capacity is constrained by the maximum amplification power of ARIS and eventually levels off. The system capacity trends in (Fig. 3(a) ) and (Fig. 3(b) ) consistently increase with higher transmit power. This is because both combination models integrate the advantages of PRIS and ARIS, ensuring high performance under both high and low transmit power conditions.In (Fig. 3(d)) , where ARIS is positioned on the user side, comparison with (Fig. 3(c) ) reveals that, under high transmit power, the system capacity of both combination models is nearly identical, regardless of the amplification power level. This suggests that in strong transmit power scenarios, the additional gains from ARIS are limited.Conclusions This paper provides an in-depth analysis of the optimization of dual RIS-assisted MISO communication systems, confirming their superiority over single RIS configurations. However, several potential research directions remain unexplored. Most current studies assume ideal channel models, whereas real-world applications often involve complex channel conditions that significantly affect system performance. Future research could investigate the performance of dual RIS systems under these practical conditions, paving the way for more robust and applicable solutions. -
1. 引言
随着第6代移动通信(The 6th Generation mobile communication, 6G)技术的兴起,未来无限通信网络将面对低延时高宽带的应用场景。为此,6G网络引入新兴技术RIS。RIS通过在平面集成大量低成本的无源反射原件,重新配置无线传播环境,提高无线通信网络性能[1,2]。
随着RIS研究不断深入,各类应用场景层出不穷。6G无线双RIS协同多输入多输出(Multi-Input Multi-Output, MIMO)通信的3维随机信道模型被提出[3]。文献[4]对双RIS辅助宽带单用户单输入单输出(Single-Input Single-Output, SISO)通信进行了信道估计。文献[5]估计了多用户MIMO系统有效信道。文献[6]利用信道空间相关性,对双RIS辅助系统信道估计均方误差(Mean Square Error, MSE)最小化的RIS参数进行优化。文献[7]提出了在任意RIS信道下,由通用信道和视距链路(Line-of-Sight, LoS)主导的两种RIS信道估计组合模型。
双PRIS辅助通信系统方面,两个协作RIS来增强无线通信的系统,文献研究表明,在接收信噪比(Signal-to-Noise Ratio, SNR)和功率增益方面,双RIS的性能优于单RIS[8]。当RIS元件总数足够大,双RIS优于传统单RIS系统的O(M4)增益[9]。文献[10]在双RIS辅助MIMO系统模型的基础上增加了两条单反射链路,模型利用LoS信道的特性,进一步验证了双RIS系统的优势。文献[11]提出了一种双RIS辅助用户MIMO通信系统,采用几何信道模型分析多用户有效信道等级对最大最小速率性能的影响。文献[12]分析了优化双RIS协同系统的准静态移相设计。双RIS的能量传输效率是单RIS的10倍,是大规模MIMO的
1000 倍[13]。含ARIS的双RIS辅助通信系统方面。在PRIS和ARIS协同辅助的情况下,文献[14]分析了LoS和仅有双反射链路的场景中RIS部署位置对可达速率的影响。文献[15]研究了双ARIS辅助无线通信系统下行通信,多天线BS在总放大功率的约束下,仅双反射链路为单天线用户服务。文献[16]基于双ARIS辅助多用户的场景,分析了反射单元数量和放大功率与接受SNR的关系。
上述研究表明,现有RIS的工作多集中于一个或多个分布式RIS辅助系统中反射系数的性能优化,仅为其覆盖范围内的相关用户提供服务[17–21],未注意到单反射链路的优越。诚然,相较于单RIS,双RIS系统可以有效弥补天线数量受限的问题,增强系统的传输可靠性和效率,然而在发射功率较低的情况下,单反射链路仍能有效提升系统的信道容量。与不使用双RIS辅助的MISO系统相比,双RIS辅助的MISO系统性能有了显著的提高。因此,本文研究了双反射链路和两条单反射链路联合服务用户,通过改变两个RIS的组合,实现下行通信中双RIS辅助MISO系统容量最大化。
2. 系统模型
如图1所示,本文考虑一个双RIS辅助无线通信系统模型。该系统由两个配备M个反射单元的RIS,一个单天线用户以及一个配备N根天线的BS组成。假设BS和用户之间直连链路受阻,仅能通过RIS反射链路进行通信。BS可以获取Ti(i=1,2)、S和Ri的信道状态信息(Channel State Information, CSI)。其中,Ti∈CM×N是BS到第i个RIS的信道增益,Ri∈C1×M是第i个RIS到用户之间的信道增益,S∈CM×M表示RIS1到RIS2的信道增益。考虑双反射链路和单反射链路共存的情况,所有信道均相互独立。
用户的接收信号和信干噪比(Signal to Interference plus Noise Ratio, SINR)分别表示为
yi=(R2Θ2SΘ1T1+R2Θ2T2+R1Θ1T1)ωx+na+ni(R,t) (1) γi = ‖ (2) 其中, {{\boldsymbol{\varTheta}} }_{i}=\text{diag}\left(\left[{a}_{1}{\text{e}}^{\text{j}{{{\theta}} }_{1}},{a}_{2}{\text{e}}^{\text{j}{{{\theta}} }_{2}},\cdots ,{a}_{M}{\text{e}}^{\text{j}{{{\theta}} }_{M}}\right]\right) , i = \left\{ {1,2} \right\} 表示RIS1, RIS2的相位矩阵,{{{\theta}} _m} \in \left[ {0,2{\pi}} \right]和{a_m} = 1分别表示RIS第m个反射单元的相移系数和放大系数,x是基站的发送信号,{n_a}{\text{~}} \mathcal{CN}\left( {0,{\sigma ^2}} \right)是均值为0,方差为{\sigma ^2}的高斯白噪声,{\boldsymbol{\omega}} 是基站天线波束赋形矢量。 {n_i}\left( {R,t} \right) 和{\sigma _i}分别表示不同组合模型下RIS放大引入的噪声信号及其功率, i \in {\text{\{ TPPR,TAPR,TPAR,TAAR\} }} ,这4种组合模型分别是:TPPR (Transmitter-PRIS PRIS-Receive)组合模型、TAPR (Transmitter-ARIS PRIS-Receive)组合模型、TPAR (Transmitter-PRIS ARIS-Receive)组合模型以及TAAR (Transmitter-ARIS ARIS-Receive)组合模型。
(1)TPPR组合模型:TPPR模型联合两个PRIS,将PRIS分别部署于基站端和用户端。TPPR组合模型中,RIS引入的噪声信号不存在,SINR中的噪声信号也不存在。因此,在式(1)与式(2)中, {n_{{\text{TPPR}}}}\left( {R,t} \right) = 0 , {\sigma _{{\text{TPPR}}}} = 0 。
(2)TAPR组合模型:在该组合模型中,ARIS部署于基站端,PRIS部署于用户端。其中,ARIS将入射信号放大,调整相移后再经过反射链路传递给用户。ARIS在放大入射信号的同时,也会放大噪声信号。在式(1)与式(2)中,噪声信号表示为 {n_i}\left( {R,t} \right) = \left( {{\boldsymbol{R}}_2}{{\boldsymbol{\varTheta}} _2}{\boldsymbol{S}}{{\boldsymbol{\varTheta}} _1} + {{\boldsymbol{R}}_1}{{\boldsymbol{\varTheta}} _1} \right){{\boldsymbol{n}}_b} , {\sigma _i} = \left\| {{\boldsymbol{R}}_2}{{\boldsymbol{\varTheta}} _2}{\boldsymbol{S}}{{\boldsymbol{\varTheta}} _1} + {{\boldsymbol{R}}_1}{{\boldsymbol{\varTheta}} _1} \right\|^2\sigma _{\text{F}}^2,其中,{{\boldsymbol{n}}_b}为ARIS放大引入的噪声, {{\boldsymbol{n}}_b}{\text{~}}\mathcal{C}\mathcal{N}\left( {0,\sigma _{\text{F}}^2} \right) 。
(3)TPAR组合模型:在TPAR组合模型中,PRIS部署于基站端,ARIS部署于用户端。噪声信号表示为 {n_i}\left( {R,t} \right) = {{\boldsymbol{R}}_2}{{\boldsymbol{\varTheta}} _2}{{\boldsymbol{n}}_c} ,其中{{\boldsymbol{n}}_c}为ARIS放大引入的噪声,{{\boldsymbol{n}}_c} {\text{~}} \mathcal{C}\mathcal{N}\left( {0,\sigma _{\text{F}}^2} \right)。
(4)TAAR组合模型:在TAAR组合模型中,两个ARIS分别部署于基站端和用户端,由于两个ARIS均会放大噪声。因此,ARIS放大引入的噪声表示为 {n_i}\left( {R,t} \right) = {R_2}{{\boldsymbol{\varTheta}} _2}{n_c} + \left( {{R_2}{{\boldsymbol{\varTheta}} _2}S{{\boldsymbol{\varTheta}} _1} + {R_1}{{\boldsymbol{\varTheta}} _1}} \right){n_b} ,噪声信号表示为{\sigma _i} = {\left\| {{R_2}{{\boldsymbol{\varTheta}} _2}S{{\boldsymbol{\varTheta}} _1} + {R_1}{{\boldsymbol{\varTheta}} _1}} \right\|^2}\sigma _{\text{F}}^2 + {\left\| {{R_2}{{\boldsymbol{\varTheta}} _2}} \right\|^2}\sigma _{\text{F}}^2。
3. 问题构建
针对上述模型,本节的优化目标是通过优化基站天线波束赋形矢量 \mathit{\omega } 以及PRIS的相移矩阵{{\boldsymbol{\varTheta}} _1}, {{\boldsymbol{\varTheta}} _2},以此最大化系统的通信速率。由于PRIS的反射单元仅能调整信号的相位,因此PRIS的反射相移必须满足单位模1,即
{\left\| {{{\boldsymbol{\varTheta}} _i}} \right\|_{m,m}} = 1,i \in \left\{ {1,2} \right\},m \in \left[ {1,2, \cdots ,M} \right] (3) 为避免放大的反射信号和反射后放大噪声功率超出ARIS的最大放大功率,ARIS应满足以下放大功率约束
{\left\| {({{\boldsymbol{\varTheta}} _1}{{\boldsymbol{T}}_1} + {{\boldsymbol{T}}_2}){\boldsymbol{\omega }}} \right\|^2} + {\left\| {{{\boldsymbol{\varTheta}} _2}{{\boldsymbol{I}}_M}} \right\|^2}\sigma _{\text{F}}^2 \le {P_{\text{F}}} (4) 相比PRIS, ARIS能有效放大信号,但引入了热噪声,因此,放大后噪声的影响需加入考虑。放大后噪声应满足以下放大功率
{\left\| {{{\boldsymbol{\varTheta}} _2}\left( {S{{\boldsymbol{\varTheta}} _1}{{\boldsymbol{T}}_1} + {{\boldsymbol{T}}_2}} \right){\boldsymbol{\omega }}} \right\|^2} + {\left\| {{{\boldsymbol{\varTheta}} _2}{{\boldsymbol{I}}_M}} \right\|^2}\sigma _{\text{F}}^2 \le {P_{\text{F}}} (5) 因此,TPPR, TAPR, TPAR, TAAR等4种组合模型的统一优化问题为
\mathop {\max }\limits_{{{\boldsymbol{\varTheta}} _1},{{\boldsymbol{\varTheta}} _2},{\boldsymbol{\omega }},{P_{\text{F}}},{P_{{\text{F2}}}}} R\left( {{\boldsymbol{\omega }},{{\boldsymbol{\varTheta}} _1},{{\boldsymbol{\varTheta}} _2},{P_{\text{F}}},{P_{{\text{F}}2}}} \right) (6a) {\text{s}}{\text{.t}}{\text{. }}{\left\| {{{\boldsymbol{\varTheta}} _i}} \right\|_{m,m}} = 1,i \in \left\{ {1,2} \right\},m \in \left[ {1,2, \cdots ,M} \right] (6b) {\left\| {({{\boldsymbol{\varTheta}} _1}{{\boldsymbol{T}}_1} + {{\boldsymbol{T}}_2}){\boldsymbol{\omega }}} \right\|^2} + {\left\| {{{\boldsymbol{\varTheta}} _2}{{\boldsymbol{I}}_M}} \right\|^2}\sigma _{\text{F}}^2 \le {P_{{\mathrm{F}}} } (6c) {\left| {{{\boldsymbol{\varTheta}} _1}} \right|_{m,m}} \le {a_{m,\max }},m \in \left[ {1,2, \cdots ,M} \right] (6d) 其中,{a_{\max }}表示ARIS的最大放大系数,{{\boldsymbol{I}}_M}表示维度为 M 的单位矩阵, {P}_{\mathrm{F}} 表示ARIS的最大放大功率。
(1)TPPR组合模型:TPPR组合模型的优化问题为
{\text{(P1)}}:\mathop {\max }\limits_{{{\boldsymbol{\varTheta}} _1},{{\boldsymbol{\varTheta}} _2},{\boldsymbol{\omega }}} {\gamma _{{\text{TPPR}}}} (7a) {\text{s}}{\text{.t}}{\text{.}}{\left\| {\boldsymbol{\omega }} \right\|^2} \le P (7b) {\left\| {{{\boldsymbol{\varTheta}} _i}} \right\|_{m,m}} = 1,i \in \left\{ {1,2} \right\},m \in \left[ {1,2, \cdots ,M} \right] (7c) 在TPPR组合模型中,两个PRIS分别部署于基站端和用户端,PRIS只能调整信号的相位,因此没有信号放大功能。考虑到该模型性能主要依赖于基站的波束赋形,该模型适用于功能受限但信道条件较好的场景。再加一个模1约束。
(2)TAPR组合模型:TAPR组合模型的优化问题为
{\text{(P2)}}:\mathop {\max }\limits_{{{\boldsymbol{\varTheta}} _1},{{\boldsymbol{\varTheta}} _2},{\boldsymbol{\omega }},P,{P_{\text{F}}}} {\gamma _{{\text{TAPR}}}} (8a) {\text{s}}{\text{.t}}{\text{. }}{\left\| {{{\boldsymbol{\varTheta}} _1}{{\boldsymbol{T}}_1}{\boldsymbol{\omega }}} \right\|^2} + {\left\| {{{\boldsymbol{\varTheta}} _1}{{\boldsymbol{I}}_M}} \right\|^2}\sigma _{\text{F}}^2 \le {P_{\text{F}}} (8b) {\left| {{{\boldsymbol{\varTheta}} _2}} \right|_{m,m}} = 1,m \in \left[ {1,2, \cdots ,M} \right] (8c) P + {P_{\text{F}}} = {P_{{\text{total}}}} (8d) 式(7b),式(6d)
在TAPR组合模型中,ARIS部署于基站端,PRIS部署于用户端。由于ARIS在放大信号的同时也会放大噪声,因此该模型需要考虑放大后的噪声影响。
(3)TPAR组合模型:与TAPR组合模型类似,ARIS引入的噪声应满足以下约束
{\left\| {{{\boldsymbol{\varTheta}} _2}\left( {S{{\boldsymbol{\varTheta}} _1}{{\boldsymbol{T}}_1} + {{\boldsymbol{T}}_2}} \right){\boldsymbol{\omega }}} \right\|^2} + {\left\| {{{\boldsymbol{\varTheta}} _2}{{\boldsymbol{I}}_M}} \right\|^2}\sigma _{\text{F}}^2 \le {P_{\text{F}}} (9) 优化问题表示为
({\mathrm{P}}3):\mathop {\max }\limits_{{{\boldsymbol{\varTheta}} _1},{{\boldsymbol{\varTheta}} _2},{\boldsymbol{\omega }},P,{P_{\mathrm{F}}}} {\gamma _{{\text{TPAR}}}} (10a) {\text{s}}{\text{.t}}{\text{.}}{\left| {{{\boldsymbol{\varTheta}} _1}} \right|_{m,m}} = 1,m \in \left[ {1,2, \cdots ,M} \right] (10b) {\left| {{{\boldsymbol{\varTheta}} _2}} \right|_{m,m}} \le {a_{m,\max }},m \in \left[ {1,2, \cdots ,M} \right] (10c) 式(7b),式(8d),式(9)
在TPAR组合模型中,PRIS部署于基站端,ARIS部署于用户端。与TAPR组合模型相似,ARIS引入的噪声也许满足功率约束。
(4)TAAR组合模型:ARIS1的放大功率约束与TAPR组合模型的约束(8b)一样,但由于ARIS1放大的噪声会传递到ARIS2上,这部分噪声经过信道衰落后会被ARIS2再次放大,因此ARIS2的放大功率约束写为
\begin{split} & {\left\| {{{\boldsymbol{\varTheta}} _2}\left( {S{{\boldsymbol{\varTheta}} _1}{{\boldsymbol{T}}_1} + {{\boldsymbol{T}}_2}} \right){\boldsymbol{\omega }}} \right\|^2} + {\left\| {{{\boldsymbol{\varTheta}} _2}{{\boldsymbol{I}}_M}} \right\|^2}\sigma _{\text{F}}^2 \\ & \quad + {\left\| {{{\left[ {{{\boldsymbol{\varTheta}} _2}{\boldsymbol{S}}{{\boldsymbol{\varTheta}} _1}} \right]}_{{m_2},1:{M_1}}}} \right\|^2}\sigma _{\text{F}}^2 \le {P_{{\text{F}}2}} \end{split} (11) 优化问题如下
({\mathrm{P}}4):\mathop {\max }\limits_{{{\boldsymbol{\varTheta}} _1},{{\boldsymbol{\varTheta}} _2},{\boldsymbol{\omega }},P,{P_{{\mathrm{F}}1}},{P_{{\mathrm{F}}2}}} {\gamma _{{\text{TAAR}}}} (12a) {\text{s}}{\text{.t}}.{\left| {{{\boldsymbol{\varTheta}} _i}} \right|_{m,m}} \le {a_{m,\max }},i \in \left\{ {1,2} \right\},m \in \left[ {1,2, \cdots ,M} \right] (12b) P + {P_{{\text{F}}1}} + {P_{{\text{F}}2}} = {P_{{\text{total}}}} (12c) 式(7b),式(8b),式(11)
在TAAR组合模型中,基站端和用户端均部署ARIS,在该组合模型中,ARIS不仅会放大噪声,放大的噪声还会传递到另一方,因此,噪声功率约束需要重新考虑。
由于式(6b)中的单位模约束,约束(6c)平方项为非凸约束,并且目标函数(6a)是3个优化变量耦合,因此优化问题为非凸优化问题。为解决该问题,本文提出一种基于半正定松弛(SemiDefinite Relaxation, SDR)方法和变量替换放缩的联合优化算法。
4. 优化算法
为解决P1,本文提出了一种RIS辅助系统的交替优化方法,该方法分3个阶段迭代求解上述问题。第1阶段,针对给定的发射波束赋形{\boldsymbol{\omega }}、RIS2处的反射系数矩阵 {{\boldsymbol{\varTheta}} _2} 和基站发射功率 P 以及RIS放大功率 {P}_{\mathrm{F}} ,优化RIS1处的反射系数矩阵{{\boldsymbol{\varTheta}} _1}。第2阶段,针对给定的发射波束赋形矢量{\boldsymbol{\omega }}、RIS1处的反射系数矩阵{{\boldsymbol{\varTheta}} _1}和基站发射功率 P 以及RIS放大功率 {P}_{{\mathrm{F}}} ,优化RIS2处的反射系数矩阵{{\boldsymbol{\varTheta}} _2}。第3阶段,针对给定的RIS1处的反射系数矩阵{{\boldsymbol{\varTheta}} _1}和RIS2处的反射系数矩阵{{\boldsymbol{\varTheta}} _2}优化发射波束赋形矢量{\boldsymbol{\omega }},基站发射功率P以及RIS放大功率{P_{\mathrm{F}}}。通过迭代更新3个阶段的优化结果,得到原问题的有效解。
本节提出一种基于AO算法的低复杂度算法。算法以迭代的方式交替优化基站处的发射波束赋形矢量{\boldsymbol{\omega }}、两个PRIS处的相移矩阵{{{\boldsymbol{\varTheta}} }_1},{{{\boldsymbol{\varTheta}} }_2},直至收敛。其中,{{{\boldsymbol{\varTheta}} }_1} = {\text{diag}}\left( {{{\boldsymbol{\theta}} _1}} \right),{{{\boldsymbol{\varTheta}} }_2} = {\text{diag}}\left( {{{\boldsymbol{\theta}} _2}} \right)。
4.1 TPPR组合模型
由于约束(6b)以及{{\boldsymbol{\varTheta}} _1}和{{\boldsymbol{\varTheta}} _2}的耦合,目标函数(6a)仍然非凸,难以最优解决。因此,本节在固定另一个反射相移向量的同时交替优化一个反射相移向量。式(6a)中的目标函数表示为
\begin{split} & R\left( {{\boldsymbol{\omega }},{{{\boldsymbol{\varTheta}} }_1},{{{\boldsymbol{\varTheta}} }_2},{P_{\mathrm{F}}},{P_{{\mathrm{F}}2}}} \right) \\ & = {\left| \begin{gathered} {{\boldsymbol{\theta}} _1}\left( {\sum\limits_{m = 1}^{{M_2}} {{{\boldsymbol{\theta}} _{2,m}}} {Q_m} + {\text{diag}}\left( {{{\boldsymbol{R}}_1}} \right){{\boldsymbol{T}}_1}} \right){\boldsymbol{\omega }} \\ + {{{\theta}} _2}{\text{diag}}\left( {{{\boldsymbol{R}}_2}} \right){{\boldsymbol{T}}_2}{\boldsymbol{\omega }} \\ \end{gathered} \right|^2} \\ & \le \left| {{{\boldsymbol{\varTheta}} _1}{{\boldsymbol{b}}^{\text{H}}}} \right| + \left| {{{\boldsymbol{b}}_0}} \right| \end{split} (13) 由三角不等式可知,式(13)当且仅当\angle \left( {{{\boldsymbol{\theta}} _1}{{\boldsymbol{b}}^{\text{H}}}} \right) = \angle \left( {{{\boldsymbol{b}}_0}} \right)时等号成立。固定{{\boldsymbol{\theta}} _2}和{\boldsymbol{\omega }},问题P1可改写为
\qquad ({\text{P}}1.1):\mathop {\max }\limits_{{{\boldsymbol{\theta}} _1}} {\left| {{{\boldsymbol{\theta}} _1}{{\boldsymbol{b}}^{\text{H}}}} \right|^2} (14a) \qquad {\text{s}}{\text{.t}}{\text{.}} \left| {{{\boldsymbol{\theta}} _{1,m}}} \right| = 1,m \in \left[ {1,2, \cdots ,M} \right] (14b) \qquad \angle \left( {{{\boldsymbol{\theta}} _1}{b^{\text{H}}}} \right) = \angle \left( {{{\boldsymbol{b}}_0}} \right) (14c) 不难证明,P1.1的最优为
{\boldsymbol{\theta}} _1^* = {{\text{e}}^{{\text{j}}\left( {\angle \left( {{{\boldsymbol{b}}_0}} \right) + \angle \left( {\boldsymbol{b}} \right)} \right)}} (15) 调整PRIS1的反射相移矢量,使得PRIS1相关反射链路(即基站→PRIS1→PRIS2→用户和基站→PRIS2→用户链路)的复合信号与另一条链路(即基站→PRIS2→用户链路)上的复合信号对齐,进而实现用户处相干信号合并。同理,按照式(13)–式(15)的类似步骤,可得PRIS2的反射相移向量为
{\boldsymbol{\theta}} _2^* = {{\text{e}}^{{\text{j}}\left( {\angle {{\boldsymbol{c}}^0} + \angle {\boldsymbol{c}}} \right)}} (16) 最后,给定协同反射波束赋形矢量{{\boldsymbol{\theta}} _1}和{{\boldsymbol{\theta}} _2},使用最大比合并(Maximal Ratio Combining, MRC)对{\boldsymbol{\omega }}进行求解,即
{{\boldsymbol{\omega }}^*} = \frac{{{{\left( {\displaystyle\sum\limits_{m = 1}^{{M_2}} {{{\boldsymbol{\theta}} _{2,m}}{{\boldsymbol{\theta}} _1}} {Q_m} + {{\boldsymbol{\theta}} _2}{G_2} + {{\boldsymbol{\theta}} _1}{G_1}} \right)}^\prime }}}{{\left\| {\left( {\displaystyle\sum\limits_{m = 1}^{{M_2}} {{{\boldsymbol{\theta}} _{2,m}}{{\boldsymbol{\theta}} _1}} {Q_m} + {{\boldsymbol{\theta}} _2}{G_2} + {{\boldsymbol{\theta}} _1}{G_1}} \right)} \right\|}}\sqrt P (17) 整个优化算法流程如算法1所示。
表 1 基于AO算法的信道对齐流程(1) 初始化参数{\boldsymbol{\theta}} _1^{(0)}, {\boldsymbol{\theta}} _2^{(0)}, {{\boldsymbol{\omega }}^{(0)}}迭代数n = 0,收敛门限\varepsilon (2) 利用初始参数计算 \gamma _{{\text{TPPR}}}^n 的值 (3) 迭代开始: (4) 固定{{{\boldsymbol{\theta}}} _2}, {\boldsymbol{\omega }},求解式(15)得到{{{\boldsymbol{\theta}}} _1} (5) 固定{{{\boldsymbol{\theta}}} _1}, {\boldsymbol{\omega }},求解式(16)得到{{{\boldsymbol{\theta}}} _2} (6) 固定{{{\boldsymbol{\theta}}} _1},{{{\boldsymbol{\theta}}} _2},求解式(17)得到{\boldsymbol{\omega }} (7) 使用{{{\boldsymbol{\theta}}} _1},{{{\boldsymbol{\theta}}} _2}, {\boldsymbol{\omega }},计算\gamma _{{\text{TPPR}}}^{n + 1}的值 (8) 判断\left| {\gamma _{{\text{TPPR}}}^{n + 1} - \gamma _{{\text{TPPR}}}^n} \right| \le \varepsilon 或n \ge 100是否成立,若不满
足条件,n = n + 1返回步骤4(9) 结束循环 (10) 得到最优解{{{\boldsymbol{\theta}}} _1}, {{{\boldsymbol{\theta}}} _2}, {\boldsymbol{\omega }} 4.2 TAPR组合模型
与4.1节相同,由于3个优化变量耦合,因此需引入AO算法解决。首先固定{{\boldsymbol{\theta}} _2},{\boldsymbol{\omega }},P和{P_{\mathrm{F}}},令 {{\boldsymbol{\varPhi}} _i} = \left[ {{\boldsymbol{\theta}} _i^{\text{H}};{{\textit{1}}}} \right]\left[ {{{{\theta}} _i},1} \right],i = \left\{ {{{\textit{1}}},2} \right\} ,为方便处理,将目标函数进行简化
{\gamma _{\text{D}}} = \frac{{{\text{tr}}\left( {{\boldsymbol{B}}{{\boldsymbol{\varPhi}} _1}} \right) + {{\boldsymbol{b}}_0}{\boldsymbol{b}}_0^{\text{H}}}}{{{\text{tr}}\left( {{{\boldsymbol{B}}_1}{{\boldsymbol{\varPhi}} _1}} \right)\sigma _{\text{F}}^2 + {\sigma ^2}}} (18) 其中,{\boldsymbol{B}} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{b}}^{\text{H}}}{\boldsymbol{b}}}&{{{\boldsymbol{b}}^{\text{H}}}{\boldsymbol{b}}_0^{\text{H}}} \\ {{{\boldsymbol{b}}_0}b}&{{\textit{0}}} \end{array}} \right], {{\boldsymbol{\tilde b}}_{{1}}} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{b}}_{{1}}}} \\ {{\textit{0}}} \end{array}} \right], {B_1} = {\text{diag}}\left( {{{{\boldsymbol{\tilde b}}}_{{1}}}} \right) {\text{dia}}{{\text{g}}^{\text{H}}}\left( {{{{\boldsymbol{\tilde b}}}_{{1}}}} \right)。
因此,优化问题(P2)可以重新表示为
({\text{P2}}.{\text{1}}):\mathop {\max }\limits_{{{\boldsymbol{\varPhi}} _1}} \frac{{{\text{tr}}\left( {{\boldsymbol{B}}{{\boldsymbol{\varPhi}} _1}} \right) + {{\boldsymbol{b}}_0}{\boldsymbol{b}}_0^{\text{H}}}}{{{\text{tr}}\left( {{{\boldsymbol{B}}_1}{{\boldsymbol{\varPhi}} _1}} \right)\sigma _{\text{F}}^2 + {\sigma ^2}}} (19a) {\text{s}}{\text{.t}}{\text{.rank}}\left( {{{\boldsymbol{\varPhi}} _1}} \right) = 1 (19b) {{\boldsymbol{\varPhi}} _1} \ge 0 (19c) {\left\| {{{\boldsymbol{\varPhi}} _1}} \right\|_{m,m}} \le a_{m,\max }^2,m \in \left[ {1,2, \cdots ,M} \right] (19d) {\text{tr}}\left( {F{{\boldsymbol{\varPhi}} _1}} \right) \le {P_{\text{F}}} (19e) {\left\| {{{\boldsymbol{\varPhi}} _1}} \right\|_{M + 1,M + 1}} = 1 (19f) 解决最大化问题的难点主要在于目标函数(19a)。为解决此问题,首先将问题改写成等价形式
\frac{{{\text{tr}}\left( {{\boldsymbol{B}}{{\boldsymbol{\varPhi}} _1}} \right) + {{\boldsymbol{b}}_0}{\boldsymbol{b}}_0^{\text{H}}}}{\kappa } \ge \tau \;\, (20) {\text{tr}}\left( {{{\boldsymbol{B}}_1}{{\boldsymbol{\varPhi}} _1}} \right)\sigma _{\text{F}}^2 + {\sigma ^2} \le \kappa (21) 其中引入的辅助变量\tau 和\kappa 分别表示在用户处接收到的SNR和噪声干扰功率,问题形式改为两个优化变量乘积。约束(20)为非凸约束,约束(21)为凸约束。本文定义{\tau _n}和{\kappa _n}为第n步迭代后的优化变量。
利用\tau \kappa 在点\left( {{\tau _n},{\kappa _n}} \right)处的1阶泰勒多项式近似原约束,得到\tau \kappa 的凸上界
\tau \kappa \le {\tau _n}{\kappa _n} + {\kappa _n}\left( {\tau - {\tau _n}} \right) + {\tau _n}\left( {\kappa - {\kappa _n}} \right) (22) 迭代更新\left( {{\tau _n},{\kappa _n}} \right),得到原问题(P2)的次优解。由于秩一约束,问题(P2.1)的目标函数仍然非凸。通过松弛{\text{rank}}\left( {{{\boldsymbol{\varPhi}} _1}} \right) = 1,舍弃掉约束(19b),得到优化问题表示为
({\text{P2}}.{\text{2}}):\mathop {\max }\limits_{{{\boldsymbol{\varPhi}} _1},\tau ,\kappa } \tau (23a) {\text{s}}{\text{.t}}{\text{.}}式(19d)–(19f),式(9),式(10)
问题(P2.2)为凸半定规划(Semidefinite Programming, SDP)问题,可通过现有的凸优化求解器进行最优求解。由于优化前已经松弛秩一约束,因此,优化后得到的解{{\boldsymbol{\varPhi}} _1}不一定是秩一解,需利用高斯随机化方法恢复。
固定{{\boldsymbol{\theta}} _1},{\boldsymbol{\omega }},P和{P_{\text{F}}},优化反射相移向量{{\boldsymbol{\varPhi}} _2},问题(P2)等价为
({\text{P2}}.3):\mathop {\max }\limits_{{\varPhi _2},\tau ,\kappa } \tau (24a) {\text{tr}}\left( {{\boldsymbol{C}}{{\boldsymbol{\varPhi}} _2}} \right) + {{\boldsymbol{c}}_0}{\boldsymbol{c}}_0^{\text{H}} \ge {\tau _n}{\kappa _n} + {\kappa _n}\left( {\tau - {\tau _n}} \right) + {\tau _n}\left( {\kappa - {\kappa _n}} \right) (24b) \left( {{\text{tr}}\left( {{\boldsymbol{D}}{{\boldsymbol{\varPhi}} _2}} \right) + {{\boldsymbol{d}}_0}{\boldsymbol{d}}_0^{\text{H}}} \right)\sigma _{\text{F}}^2 + {\sigma ^2} \le \kappa (24c) {\left\| {{{\boldsymbol{\varPhi}} _2}} \right\|_{m,m}} = 1,m \in \left[ {1,2, \cdots ,M + 1} \right] (24d) {{\boldsymbol{\varPhi}} _2} \succcurlyeq 0 (24e) {\text{rank}}\left( {{{\boldsymbol{\varPhi}} _2}} \right) = 1 (24f) 其中, {\boldsymbol{C}} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{c}}^{\text{H}}}{\boldsymbol{c}}}&{{{\boldsymbol{c}}^{\text{H}}}{\boldsymbol{c}}_0^{\text{H}}} \\ {{{\boldsymbol{c}}_0}{\boldsymbol{c}}}&{{\textit{0}}} \end{array}} \right] , {\boldsymbol{D}} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{d}}^{\text{H}}}{\boldsymbol{d}}}&{{{\boldsymbol{d}}^{\text{H}}}{\boldsymbol{d}}_0^{\text{H}}} \\ {{{\boldsymbol{d}}_0}{\boldsymbol{d}}}&{{\textit{0}}}\end{array}} \right] , {\boldsymbol{d}} = {\text{diag}}\left( {{{\boldsymbol{R}}_2}} \right){\boldsymbol{S}}{\text{diag}}\left( {{{\boldsymbol{\varTheta}} _1}} \right) 及 {{\boldsymbol{d}}_0} = {{\boldsymbol{R}}_1}{\text{diag}}\left( {{{\boldsymbol{\varTheta}} _1}} \right) 。
最后,给定协同反射赋形矢量{{\boldsymbol{\theta}} _1}和{{\boldsymbol{\theta}} _2},对发送波束赋形矢量{\boldsymbol{\omega }},P和{P_{\text{F}}}进行求解,利用SDR技术将该问题转化为一个松弛问题。
\qquad {\text{(P2}}{\text{.4):}}\mathop {\max }\limits_{{\boldsymbol{W}},P,{P_{\mathrm{F}}}} {\text{tr}}({\boldsymbol{Y}}{\boldsymbol{W}}) (25a) \qquad {\text{s}}{\text{.t}}{{.{\mathrm{tr}}(W)}} \le P (25b) \qquad {{{\mathrm{rank}}(W) = 1}} (25c) \qquad {\text{tr(}}{\boldsymbol{X}}{{W) + }}{\left\| {{{\boldsymbol{\varTheta}} _1}{{\boldsymbol{I}}_M}} \right\|^2}\sigma _{\text{F}}^2 \le {P_{\text{F}}} (25d) \qquad P + {P_{\mathrm{F}}} = {P_{{\text{total}}}} (25e) 其中, {\boldsymbol{Y}} = {\left( {{R_2}{{\boldsymbol{\varTheta}} _2}S{{\boldsymbol{\varTheta}} _1}{T_1} + {R_2}{{\boldsymbol{\varTheta}} _2}{T_2} + {R_1}{{\boldsymbol{\varTheta}} _1}{T_1}} \right)^{\text{H}}} {\text{ }}*\left( {{R_2}{{\boldsymbol{\varTheta}} _2}S{{\boldsymbol{\varTheta}} _1}{T_1} + {R_2}{{\boldsymbol{\varTheta}} _2}{T_2} + {R_1}{{\boldsymbol{\varTheta}} _1}{T_1}} \right) , {\boldsymbol{W}} = {{\boldsymbol{\omega }}^{\text{{\rm H}}}}{\boldsymbol{\omega }}, {\boldsymbol{X}} = {\left( {{{{\boldsymbol{\varTheta}} }_1}{{\boldsymbol{T}}_1}} \right)^{\text{H}}}\left( {{{{\boldsymbol{\varTheta}} }_1}{{\boldsymbol{T}}_1}} \right)。为解决W的秩一约束,提出一种基于罚函数方法来恢复最优秩一解。问题(P2.4)改写为
\begin{split} & ({\text{P2}}.{\text{4}}):\mathop {\min }\limits_{{\boldsymbol{W}},P,{P_{\text{F}}}} - {\text{tr}}({\boldsymbol{YW}}) \\ & \quad + p\left( {{\text{tr}}\left( {\boldsymbol{W}} \right) - {u_{{\text{max}}}}{{\left( {{{\boldsymbol{W}}^{(k)}}} \right)}^{\text{H}}}{\boldsymbol{W}}{u_{{\text{max}}}}\left( {{{\boldsymbol{W}}^{(k)}}} \right)} \right) \end{split} (26a) {\text{s}}{\text{.t}}{\text{.tr}}({\boldsymbol{W}}) \le P (26b) {\text{tr}}({\boldsymbol{XW}}) + {\left\| {{{\boldsymbol{\varTheta}} _1}{{\boldsymbol{I}}_M}} \right\|^2}\sigma _{\text{F}}^2 \le {P_{\text{F}}} (26c) P + {P_{\text{F}}} = {P_{{\text{total}}}} (26d) 其中,p > 0为惩罚权重,当其值足够大,可满足{\text{tr}}\left( W \right) - {\lambda _{{\text{max}}}}\left( W \right)的值较小的情况。
整个优化算法流程如算法2所示。
表 2 基于SCA的AO算法流程(1) 初始化参数{{\boldsymbol{\theta}}} _1^{(0)}, {{\boldsymbol{\theta}}} _2^{(0)}, {{\boldsymbol{\omega }}^{(0)}}, {\tau _0}, {\kappa _0},迭代数n = 0,收敛
门限\varepsilon(2) 计算\gamma _{{\text{TAPR}}}^n的值 (3) 迭代开始: (4) 固定{{{\boldsymbol{\theta}}} _2}, {\boldsymbol{\omega }},求解问题(P2.1),将解进行高斯随机化后得
到{{\boldsymbol{\theta}}} _1^{n + 1}(5) 固定{{{\boldsymbol{\theta}}} _1}, {\boldsymbol{\omega }},求解问题(P2.2),将解进行高斯随机化后得
到{{\boldsymbol{\theta}}} _2^{n + 1}(6) 固定{{{\boldsymbol{\theta}}} _1}, {{{\boldsymbol{\theta}}} _2},求解问题(P2.3)得到{{\boldsymbol{\omega }}^{n + 1}} (7) 使用{{\boldsymbol{\theta}}} _1^{n + 1}, {{\boldsymbol{\theta}}} _2^{n + 1},{{\boldsymbol{\omega }}^{n + 1}},计算\gamma _{{\text{TAPR}}}^{n + 1}的值 (8) 判断收敛条件\left| {\gamma _{{\text{TAPR}}}^{n + 1} - \gamma _{{\text{TAPR}}}^n} \right| \le \varepsilon 或n \ge 100是否成
立,若满足条件,迭代结束,否则,n = n + 1返回步
骤4(9) 得到最优解{{{\boldsymbol{\theta}}} _1}, {{{\boldsymbol{\theta}}} _2}, {\boldsymbol{\omega }} 4.3 TPAR组合模型
在仅考虑相位设计的情况下,问题(P3)与问题(P1)一致,因此,利用问题(P1)的最优相位设计,只需对每个ARIS的振幅进行优化。这有助于降低算法的计算复杂度。
与4.2节类似,给定协同反射波束赋形矢量{{\boldsymbol{\theta}} _1}和{{\boldsymbol{\theta}} _2},对发送波束赋形矢量{\boldsymbol{\omega }},P和{P_{\text{F}}}进行求解,具体算法流程,见4.2节的算法2。问题(P3)改写为
\begin{split} &({\text{P3}}.{\text{1}}):\mathop {\min }\limits_{{\boldsymbol{W}},P,{P_{\mathrm{F}}}} - {\text{tr}}({\boldsymbol{YW}}) \\ &{\text{ }} + p\left( {{\text{tr}}\left( {\boldsymbol{W}} \right) - {u_{{\text{max}}}}{{\left( {{{\boldsymbol{W}}^{(k)}}} \right)}^{\text{H}}}{\boldsymbol{W}}{u_{{\text{max}}}}\left( {{{\boldsymbol{W}}^{(k)}}} \right)} \right) \end{split} (27a) {\text{s}}{\text{.t}}{\text{.tr}}({\boldsymbol{W}}) \le P (27b) {\text{tr}}({\boldsymbol{Z}}W) + {\left\| {{{\boldsymbol{\varTheta}} _2}{{\boldsymbol{I}}_M}} \right\|^2}\sigma _{\text{F}}^2 \le {P_{\text{F}}} (27c) P + {P_{\text{F}}} = {P_{{\text{total}}}} (27d) 其中,{\boldsymbol{Z}} = {\left( {{{\boldsymbol{\varTheta}} _2}\left( {{\boldsymbol{S}}{{\boldsymbol{\varTheta}} _1}{{\boldsymbol{T}}_1} + {{\boldsymbol{T}}_2}} \right)} \right)^{\rm H}}\left( {{{\boldsymbol{\varTheta}} _2}\left( {{\boldsymbol{S}}{{\boldsymbol{\varTheta}} _1}{{\boldsymbol{T}}_1} + {{\boldsymbol{T}}_2}} \right)} \right)。
4.4 TAAR组合模型
与4.3节相同,由于优化变量耦合,因此需引入AO算法解决。与问题(P2)相比,目标函数仅多了ARIS2放大噪声项,与 {{\boldsymbol{\varTheta}} _1} 无关。因此,目标函数简化与(P2)相同,经过SCA变换后,得到最终凸优化问题
{\text{(P}}4.1):\mathop {\max }\limits_{{{\boldsymbol{\varPhi}} _1},\tau ,\kappa } \tau (28a) \begin{split} & {\text{s}}{\text{.t}}.{\text{tr}}\left( {{\boldsymbol{B}}{{\boldsymbol{\varPhi}} _1}} \right) + {{\boldsymbol{b}}_0}{\boldsymbol{b}}_0^{\text{H}} \\ & \ge {\tau _n}{\kappa _n} + {\kappa _n}\left( {\tau - {\tau _n}} \right) + {\tau _n}\left( {\kappa - {\kappa _n}} \right) \end{split} (28b) {\text{tr}}\left( {{{\boldsymbol{B}}_1}{{\boldsymbol{\varPhi}} _1}} \right)\sigma _{\text{F}}^2 + {\left\| {{{\boldsymbol{R}}_2}{{\boldsymbol{\varTheta}} _2}} \right\|^2}\sigma _{\text{F}}^2 + {\sigma ^2} \le \kappa (28c) 式(19c)–式(19f),式(11)
固定{{{\theta}} _1}, {\boldsymbol{\omega }}, P, {P_{{\text{F}}1}}和{P_{{\text{F}}2}},对目标函数分母进行变换,具体算法流程,与4.2节的算法2类似。问题(P4.1)改写为
\begin{split} & ({\text{P}}4.2):\mathop {\min }\limits_{{\boldsymbol{W}},P,{P_{{\mathrm{F}}1}},{P_{{\mathrm{F}}2}}} - {\text{tr}}({\boldsymbol{YW}}) \\ & {\text{ }} + p\left( {{\text{tr}}\left( {\boldsymbol{W}} \right) - {u_{{\text{max}}}}{{\left( {{{\boldsymbol{W}}^{(k)}}} \right)}^{\text{H}}}{\boldsymbol{W}}{u_{{\text{max}}}}\left( {{{\boldsymbol{W}}^{(k)}}} \right)} \right) \end{split} (29a) {\text{s}}{\text{.t}}{\text{.tr}}({\boldsymbol{W}}) \le P (29b) {\text{tr}}({\boldsymbol{XW}}) + {\left\| {{{\boldsymbol{\varTheta}} _1}{{\boldsymbol{I}}_M}} \right\|^2}\sigma _{\text{F}}^2 \le {P_{{\text{F}}1}} (29c) {\text{tr}}({\boldsymbol{ZW}}) + {\left\| {{{\boldsymbol{\varTheta}} _2}{{\boldsymbol{I}}_M}} \right\|^2}\sigma _{\text{F}}^2 + {\left\| {{{\left[ {{{\boldsymbol{\varTheta}} _2}{\boldsymbol{S}}{{\boldsymbol{\varTheta}} _1}} \right]}_{{m_2},1:{M_1}}}} \right\|^2}\sigma _{\text{F}}^2 \le {P_{{\text{F}}2}} (29d) P + {P_{{\text{F}}1}} + {P_{{\text{F}}2}} = {P_{{\text{total}}}} (29e) 其中,X,Z的定义见式(26c)、式(27c)。
5. 仿真结果分析
5.1 仿真参数
本文研究基站和用户之间的直连链路被障碍物阻断,仅通过RIS形成的反射链路进行辅助通信的场景下,双RIS辅助对无线通信系统性能的提升。
仿真参数设置如下:基站发射天线N = 10,用户为单天线,RIS1, RIS2包含的反射单元个数{M_1} = {M_2} = 64。考虑了三维笛卡尔坐标系,基站、用户、RIS1和RIS2的坐标分别为:\left( {1,0,0} \right),\left( {1,100,0} \right),\left( {0,0,5} \right),\left( {0,100,5} \right)。BS的天线阵基向和用户的天线阵基向均设置为{{\boldsymbol{v}}_{\text{t}}} = {{\boldsymbol{v}}_{\text{r}}} = {\left[ { - 1,0,0} \right]^{\text{T}}},RIS1的基底方向{\boldsymbol{v}}_1^{\left( a \right)} = {\left[ { - 1/2,\sqrt 3 /2,0} \right]^{\text{T}}}和{\boldsymbol{v}}_1^{\left( b \right)} = {\left[ {0,0,1} \right]^{\text{T}}};RIS2的基底方向{\boldsymbol{v}}_2^{\left( a \right)} = {\left[ {0,0,1} \right]^{\text{T}}}和{\boldsymbol{v}}_2^{\left( b \right)} = \left[ - 1/2, - \sqrt 3 /2, 0 \right]^{\text{T}}。系统工作载波频率为 6{\text{ GHz}} ,波长为 \lambda = 0.05{\text{ m}} ,基站天线间隔{l_{\text{n}}} = \lambda /2,RIS反射单元间隔{l_{\text{m}}} = \lambda /5。用户接收信号的噪声功率为 {\sigma ^2} = - 80{\text{ dBm}} ,莱斯因子\kappa = 1,\beta = - 30{\text{ dB}}表示参考距离 {d_0} = 1{\text{ m}} 的路径损耗,基站到RIS1, RIS2的路径损耗系数及RIS1, RIS2到用户的路径损耗系数均设置为 {\alpha _{_{{\mathrm{B}}{{\mathrm{R}}_1}}}} = {\alpha _{_{{\mathrm{BR}}_2}}} = {\alpha _{_{{{\mathrm{R}}_1}{\mathrm{U}}}}} = {\alpha _{_{{{\mathrm{R}}_2}{\mathrm{U}}}}} = 3 ,RIS1到RIS2的路径损耗系数 {\alpha _{_{{\mathrm{R}}_1}{{\mathrm{R}}_2}}} = 2.2 。放大系数的最大值设置a_{\max }^2 = 40{\text{ dB}},本文所有算法的收敛因子均为\varepsilon = {10^{ - 3}}。
5.2 相关参数对系统最大信道容量的影响
为对比各组合模型对系统信道带来的增益,下文所有参数一致。
5.2.1 放大系数对系统信道容量的影响
图2中,设置总功率 {P_{{\text{total}}}} = 30{\text{ dBm}} ,TPPR组合模型的基站发射功率 {P_{{\text{TPPR}}}} = {P_{{\text{total}}}} ;TAPR, TPAR和单Active模型的基站发射功率和最大放大功率为 {P_i} = {P_{{\text{F}},i}} = {P_{{\text{total}}}}/2 \approx 27{\text{ dBm}} , i \in { TAPR, TPAR, single-Active};TAAR组合模型的基站发射功率和最大放大功率为{P_{{\text{TAAR}}}} = {P_{{\text{F}}1}} = {P_{{\text{F}}2}} = {P_{{\text{total}}}}/3 \approx 25.2{\text{ dBm}}。
随着a_{\max }^2增大,各组合模型系统容量不断提升,但当放大系数增大到一定值时,由于最大放大功率的约束,各组合模型曲线趋于平滑。放大系数较小时,TAPR和TPAR组合模型系统容量相等。受放大系数限制,ARIS在基站端或用户端所获增益相同。放大系数较大时,由于ARIS靠近基站,接收到的信号强度较用户端更高,更早收到放大功率限制的影响,TAPR组合模型的系统容量比TPAR组合模型提前趋于平缓。因此,在部署时,应尽量将ARIS部署在靠近用户的位置。
5.2.2 发射功率对系统信道容量的影响
图3展示了不同发射功率时,随着发射功率增加,不同组合模型的系统容量表现。设置放大系数a_{\max }^2 = 40{\text{ dB}}。
如图3(a)所示,由于受到放大系数的约束,在低发射功率条件下,放大功率较大的曲线区域重合。随着发射功率的增大,系统容量保持在一定水平,这是因为ARIS靠近基站端,接收到的信号较强。由于PRIS的影响,在高发射功率条件下,系统容量随发射功率的增大而增大。PRIS仅反射优化信号路径,不会受到放大功率的约束,因此,随着发射功率增强,PRIS接收到的信号也增强。
如图3(b)所示,系统容量随着P的增大而增加。与图3(a)相似,TPAR组合模型受到放大系数的约束,不同放大功率下,系统容量的曲线趋势基本一致。这说明,在弱发射功率的情况下,信号到达ARIS处的强度尚未超过最大放大功率预算,而随着发射功率增大,系统容量受到放大功率约束的影响,曲线上升趋势减缓,最终趋于平滑。在较大发射功率的情况下,TPAR组合模型的曲线趋于平缓,这是由于ARIS离基站远,所接受信号强度低,受放大功率约束时所需的发射功率大。因此,ARIS应尽可能部署在用户端。
如图3(c)所示,在双ARIS辅助的情况下,TAAR组合模型结合了上述两个组合模型的特点。在弱功率的情况下,会获得较大的增益,而在强功率的情况下,会受到自身最大放大功率的约束,系统容量最终趋于平缓。图3(a)和图3(b)的系统容量随着发射功率增大而增大,这是由于上述两种组合模型结合了PRIS和ARIS的优点,无论发射功率高或低,都能保持较高性能增益。
如图3(d)所示,设置ARIS位于用户端。对比图3(c)与图3(d),可以发现,在强发射功率的情况下,无论放大功率高低,两组合模型系统容量一致。这说明,ARIS在强发射功率的情况下所获增益有限。
6. 结束语
本文研究了双RIS辅助MISO通信系统的性能。根据提出的4种RIS组合模型,假设基站和用户之间直连链路受阻,仅通过RIS形成的反射链路进行通信。基于所提出的组合模型,本文提出了一种基于AO的算法来优化基站波束赋形、双RIS之间的相移矩阵,以实现系统通信信道容量的最大化。鉴于各个约束条件之间相互独立,本文将原问题分解为3个子问题并使用AO算法进行迭代求解。仿真结果表明,当ARIS放大系数相同时,在弱发射功率条件下,相较于单ARIS组合模型,含有ARIS的双RIS组合模型能显著提升系统容量增益。本文针对双RIS辅助MISO通信系统的优化进行了深入研究,但仍有许多潜在研究方向。目前研究多假设理想的信道模型,在实际应用中,复杂的信道模型将对双RIS系统性能产生显著影响。未来研究人员可以进一步研究在复杂条件下,双RIS系统的性能表现。
-
1 基于AO算法的信道对齐流程
(1) 初始化参数{\boldsymbol{\theta}} _1^{(0)}, {\boldsymbol{\theta}} _2^{(0)}, {{\boldsymbol{\omega }}^{(0)}}迭代数n = 0,收敛门限\varepsilon (2) 利用初始参数计算 \gamma _{{\text{TPPR}}}^n 的值 (3) 迭代开始: (4) 固定{{{\boldsymbol{\theta}}} _2}, {\boldsymbol{\omega }},求解式(15)得到{{{\boldsymbol{\theta}}} _1} (5) 固定{{{\boldsymbol{\theta}}} _1}, {\boldsymbol{\omega }},求解式(16)得到{{{\boldsymbol{\theta}}} _2} (6) 固定{{{\boldsymbol{\theta}}} _1},{{{\boldsymbol{\theta}}} _2},求解式(17)得到{\boldsymbol{\omega }} (7) 使用{{{\boldsymbol{\theta}}} _1},{{{\boldsymbol{\theta}}} _2}, {\boldsymbol{\omega }},计算\gamma _{{\text{TPPR}}}^{n + 1}的值 (8) 判断\left| {\gamma _{{\text{TPPR}}}^{n + 1} - \gamma _{{\text{TPPR}}}^n} \right| \le \varepsilon 或n \ge 100是否成立,若不满
足条件,n = n + 1返回步骤4(9) 结束循环 (10) 得到最优解{{{\boldsymbol{\theta}}} _1}, {{{\boldsymbol{\theta}}} _2}, {\boldsymbol{\omega }} 2 基于SCA的AO算法流程
(1) 初始化参数{{\boldsymbol{\theta}}} _1^{(0)}, {{\boldsymbol{\theta}}} _2^{(0)}, {{\boldsymbol{\omega }}^{(0)}}, {\tau _0}, {\kappa _0},迭代数n = 0,收敛
门限\varepsilon(2) 计算\gamma _{{\text{TAPR}}}^n的值 (3) 迭代开始: (4) 固定{{{\boldsymbol{\theta}}} _2}, {\boldsymbol{\omega }},求解问题(P2.1),将解进行高斯随机化后得
到{{\boldsymbol{\theta}}} _1^{n + 1}(5) 固定{{{\boldsymbol{\theta}}} _1}, {\boldsymbol{\omega }},求解问题(P2.2),将解进行高斯随机化后得
到{{\boldsymbol{\theta}}} _2^{n + 1}(6) 固定{{{\boldsymbol{\theta}}} _1}, {{{\boldsymbol{\theta}}} _2},求解问题(P2.3)得到{{\boldsymbol{\omega }}^{n + 1}} (7) 使用{{\boldsymbol{\theta}}} _1^{n + 1}, {{\boldsymbol{\theta}}} _2^{n + 1},{{\boldsymbol{\omega }}^{n + 1}},计算\gamma _{{\text{TAPR}}}^{n + 1}的值 (8) 判断收敛条件\left| {\gamma _{{\text{TAPR}}}^{n + 1} - \gamma _{{\text{TAPR}}}^n} \right| \le \varepsilon 或n \ge 100是否成
立,若满足条件,迭代结束,否则,n = n + 1返回步
骤4(9) 得到最优解{{{\boldsymbol{\theta}}} _1}, {{{\boldsymbol{\theta}}} _2}, {\boldsymbol{\omega }} -
[1] SIDDIQI M Z and MIR T. Reconfigurable intelligent surface-aided wireless communications: An overview[J]. Intelligent and Converged Networks, 2022, 3(1): 33–63. doi: 10.23919/ICN.2022.0007. [2] 张力康, 杜清河, 卢忱, 等. 面向6G的RIS辅助通信系统的信道估计技术[J]. 移动通信, 2024, 48(6): 75–80. doi: 10.3969/j.issn.1006-1010.20240425-0002.ZHANG Likang, DU Qinghe, LU Chen, et al. Overview of channel estimation for reconfigurable intelligent surface-assisted communications towards 6G system[J]. Mobile Communications, 2024, 48(6): 75–80. doi: 10.3969/j.issn.1006-1010.20240425-0002. [3] JIANG Hao, ZHANG Zaichen, XIONG Baiping, et al. A 3D stochastic channel model for 6G wireless double-IRS cooperatively assisted MIMO communications[C]. 2021 13th International Conference on Wireless Communications and Signal Processing, Changsha, China, 2021. doi: 10.1109/WCSP52459.2021.9613605. [4] GORTY V K. Channel estimation for double IRS assisted broadband single-user SISO communication[C]. 2022 IEEE International Conference on Signal Processing and Communications, Bangalore, India, 2022: 1–5. doi: 10.1109/SPCOM55316.2022.9840513. [5] ZHENG Beixiong, YOU Changsheng, and ZHANG Rui. Efficient channel estimation for double-IRS aided multi-user MIMO system[J]. IEEE Transactions on Communications, 2021, 69(6): 3818–3832. doi: 10.1109/TCOMM.2021.3064947. [6] BAZZI S and XU Wen. IRS parameter optimization for channel estimation MSE minimization in double-IRS aided systems[J]. IEEE Wireless Communications Letters, 2022, 11(10): 2170–2174. doi: 10.1109/LWC.2022.3196126. [7] YOU Changsheng, ZHENG Beixiong, and ZHANG Rui. Wireless communication via double IRS: Channel estimation and passive beamforming designs[J]. IEEE Wireless Communications Letters, 2021, 10(2): 431–435. doi: 10.1109/LWC.2020.3034388. [8] HAN Yitao, ZHANG Shuowen, DUAN Lingjie, et al. Cooperative double-IRS aided communication: Beamforming design and power scaling[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1206–1210. doi: 10.1109/LWC.2020.2986290. [9] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025. [10] HAN Yitao, ZHANG Shuowen, DUAN Lingjie, et al. Double-IRS aided MIMO communication under LoS channels: Capacity maximization and scaling[J]. IEEE Transactions on Communications, 2022, 70(4): 2820–2837. doi: 10.1109/TCOMM.2022.3151893. [11] ZHENG Beixiong, YOU Changsheng, and ZHANG Rui. Double-IRS assisted multi-user MIMO: Cooperative passive beamforming design[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4513–4526. doi: 10.1109/TWC.2021.3059945. [12] DING Gengfa, YANG Feng, DING Lianghui, et al. Analysis and optimization of a double-IRS cooperatively assisted system with a quasi-static phase shift design[J]. IEEE Transactions on Wireless Communications, 2023, 22(7): 4416–4433. doi: 10.1109/TWC.2022.3225474. [13] KUMAR C and KASHYAP S. On the power transfer efficiency and feasibility of wireless energy transfer using double IRS[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6165–6180. doi: 10.1109/TVT.2022.3231636. [14] FU Min and ZHANG Rui. Active and passive IRS jointly aided communication: Deployment design and achievable rate[J]. IEEE Wireless Communications Letters, 2023, 12(2): 302–306. doi: 10.1109/LWC.2022.3224457. [15] LI Xinhao, YOU Changsheng, KANG Zhenyu, et al. Double-active-IRS aided wireless communication with total amplification power constraint[J]. IEEE Communications Letters, 2023, 27(10): 2817–2821. doi: 10.1109/LCOMM.2023.3298070. [16] KANG Zhenyu, YOU Changsheng, and ZHANG Rui. Double-active-IRS aided wireless communication: Deployment optimization and capacity scaling[J]. IEEE Wireless Communications Letters, 2023, 12(11): 1821–1825. doi: 10.1109/LWC.2023.3294258. [17] NGUYEN T A, NGUYEN H V, DO D T, et al. Performance analysis of downlink double-IRS systems relying on non-orthogonal multiple access[J]. IEEE Access, 2023, 11: 110208–110220. doi: 10.1109/ACCESS.2023.3322373. [18] HU Xiaoling, ZHONG Caijun, ZHANG Yu, et al. Location information aided multiple intelligent reflecting surface systems[J]. IEEE Transactions on Communications, 2020, 68(12): 7948–7962. doi: 10.1109/TCOMM.2020.3020577. [19] TEJAS K S, UDAYKUMAR M, VARUN R, et al. Intelligent reflecting surface assisted wireless communication for coverage enhancement[C]. 2023 International Conference on Smart Systems for applications in Electrical Sciences, Tumakuru, India, 2023. doi: 10.1109/ICSSES58299.2023.10200009. [20] 王丹, 陈小梦, 王勇芳. 可重构智能表面辅助无线通信的用户分配[J]. 电子与信息学报, 2022, 44(7): 2425–2430. doi: 10.11999/JEIT211473.WANG Dan, CHEN Xiaomeng, and WANG Yongfang. User assignment for wireless communication assisted by reconfigurable intelligent surfaces[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2425–2430. doi: 10.11999/JEIT211473. [21] 王华华, 孙宸, 朱鹏云. 可重构智能表面辅助双功能雷达通信系统的联合波束优化[J]. 电子与信息学报, 2024, 46(1): 222–228. doi: 10.11999/JEIT221537.WANG Huahua, SUN Chen, and ZHU Pengyun. Joint beamforming optimization for RIS-assisted dual-functional radar-communication systems[J]. Journal of Electronics & Information Technology, 2024, 46(1): 222–228. doi: 10.11999/JEIT221537. -