高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于梅尔倒谱系数的无人机探测与识别方法

聂伟 张中洋 杨小龙 周牧

聂伟, 张中洋, 杨小龙, 周牧. 基于梅尔倒谱系数的无人机探测与识别方法[J]. 电子与信息学报, 2025, 47(4): 1076-1084. doi: 10.11999/JEIT241111
引用本文: 聂伟, 张中洋, 杨小龙, 周牧. 基于梅尔倒谱系数的无人机探测与识别方法[J]. 电子与信息学报, 2025, 47(4): 1076-1084. doi: 10.11999/JEIT241111
NIE Wei, ZHANG Zhongyang, YANG Xiaolong, ZHOU Mu. Unmanned Aerial Vehicles Detection and Recognition Method Based on Mel Frequency Cepstral Coefficients[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1076-1084. doi: 10.11999/JEIT241111
Citation: NIE Wei, ZHANG Zhongyang, YANG Xiaolong, ZHOU Mu. Unmanned Aerial Vehicles Detection and Recognition Method Based on Mel Frequency Cepstral Coefficients[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1076-1084. doi: 10.11999/JEIT241111

基于梅尔倒谱系数的无人机探测与识别方法

doi: 10.11999/JEIT241111
基金项目: 国家自然科学基金(62101085),重庆市教委科学技术研究项目(KJQN202400647),公安部科技计划项目 (2024JSZ16),重庆市技术创新与应用发展专项重点项目(CSTB2024TIAD-KPX0104)
详细信息
    作者简介:

    聂伟:男,讲师,研究方向为微波毫米波电路、天线技术、雷达成像技术等

    张中洋:男,硕士生,研究方向为射频指纹识别技术

    杨小龙:男,副教授,硕士生导师,研究方向为无线感知与定位技术、光电信息融合智能感知技术等

    周牧:男,教授,博士生导师,研究方向为研究方向为量子雷达、无线定位与感知技术、机器学习等

    通讯作者:

    杨小龙 yangxiaolong@cqupt.edu.cn

  • 中图分类号: TN957.51; TN929.5

Unmanned Aerial Vehicles Detection and Recognition Method Based on Mel Frequency Cepstral Coefficients

Funds: The National Natural Science Foundation of China (62101085), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202400647), The Science and Technology Project of Ministry of Public Security (2024JSZ16), Chongqing Technology Innovation and Application Development Special Key Project (CSTB2024TIAD-KPX0104)
  • 摘要: 近年来无人机(UAV)数量的剧增,无论是在民用还是军用领域都带来了一定的隐私和安全问题,因此对无人机的管控技术已成为研究热点。当前基于深度学习的射频指纹识别(RFFI)技术虽然在无人机识别上表现优异,但由于模型复杂度高,训练速度慢,且在不同数据分布下的泛化能力有限,因此在实际应用中存在局限性。该文提出一种基于梅尔频率倒谱系数的无人机识别方法,使用USRP N210采集无人机图传信号,然后提取梅尔倒谱系数(MFCC)作为无人机射频指纹特征,输入门控循环单元(GRU)进行分类识别,最后通过正则化正交匹配追踪算法(ROMP)估计无人机定位参数得到无人机具体位置。试验结果表明无人机的识别准确率可达98%,且GRU模型参数量只有1.6 k,训练时间仅需9 s,显著降低了模型复杂度并提高了训练速度和识别精度,在无人机定位中,其3维定位误差小于1 m。为进一步验证该文所提方法的可行性,对同一厂家同一型号10个无线模块进行不同距离的分类识别,1 m, 2 m, 3 m和5 m识别结果分别为100%, 98%, 98%和99%。
  • 图  1  数据分帧示意图

    图  2  GRU内部结构图

    图  3  GRU模型参数量与隐藏单元个数的关系

    图  4  GRU模型结构图

    图  5  分类识别流程图

    图  6  USRP N210整体结构示意图

    图  7  5架不同厂家的无人机

    图  8  GRU模型混淆矩阵

    图  9  nRF24L01无线模块

    图  10  无人机定位模型

    图  11  基于Wireless InSite模拟的无人机飞行场景图

    图  12  接收机的平均误差图

    图  13  两种算法的AOA和AOE误差对比图

    表  1  USRP N210主要工作参数

    参数 数值(Mbit/s)
    ADC采样率 100
    DAC采样率 400
    数据传输速率 50
    下载: 导出CSV

    表  2  不同分类算法对比表

    方法 识别精度(%) 参数量(k) 训练时间(s)
    KNN 93.3
    SVM 88.7
    CNN 96.0 17.5 20
    LSTM 96.6 7.5 16
    GRU 98.0 1.6 9
    下载: 导出CSV

    表  3  不同距离识别精度对比表

    距离(m) 识别精度(%)
    1 100
    2 98
    3 98
    5 99
    下载: 导出CSV

    表  4  飞行高度20 m算法对比表

    算法置信度(%)2维误差(m)3维误差(m)
    OMP500.300.65
    ROMP500.300.55
    OMP
    ROMP
    60
    60
    0.35
    0.35
    0.70
    0.60
    下载: 导出CSV

    表  5  飞行高度30 m算法对比表

    算法置信度(%)2维误差(m)3维误差(m)
    OMP500.300.60
    ROMP500.300.45
    OMP
    ROMP
    60
    60
    0.35
    0.35
    0.65
    0.60
    下载: 导出CSV

    表  6  飞行高度50 m算法对比表

    算法置信度(%)2维误差(m)3维误差(m)
    OMP500.250.65
    ROMP500.270.45
    OMP
    ROMP
    60
    60
    0.29
    0.35
    0.95
    0.55
    下载: 导出CSV
  • [1] DING Siyi, GUO Xiao, PENG Ti, et al. Drone detection and tracking system based on fused acoustical and optical approaches[J]. Advanced Intelligent Systems, 2023, 5(10): 2300251. doi: 10.1002/aisy.202300251.
    [2] MAKSYMIUK R, PŁOTKA M, ABRATKIEWICZ K, et al. 5G network-based passive radar for drone detection[C]. Proceedings of 2023 24th International Radar Symposium (IRS), Berlin, Germany, 2023: 1–10. doi: 10.23919/IRS57608.2023.10172437.
    [3] ZHANG Junqing, WOODS R, SANDELL M, et al. Radio frequency fingerprint identification for narrowband systems, modelling and classification[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 3974–3987. doi: 10.1109/TIFS.2021.3088008.
    [4] HE Jiashuo, HUANG Sai, YANG Zheng, et al. Channel-agnostic radio frequency fingerprint identification using spectral quotient constellation errors[J]. IEEE Transactions on Wireless Communications, 2024, 23(1): 158–170. doi: 10.1109/TWC.2023.3276519.
    [5] LI Dingzhao, QI Jie, HONG Shaohua, et al. A class-incremental approach with self-training and prototype augmentation for specific emitter identification[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 1714–1727. doi: 10.1109/TIFS.2023.3343193.
    [6] GU Xiaolin, WU Wenjia, ZHOU Yusen, et al. TEA-RFFI: Temperature adjusted radio frequency fingerprint-based smartphone identification[J]. Computer Networks, 2024, 238: 110115. doi: 10.1016/j.comnet.2023.110115.
    [7] 张晔. 基于深度学习的射频指纹识别系统设计与实现[D]. [硕士论文], 中国科学院大学(中国科学院国家空间科学中心), 2021. doi: 10.27562/d.cnki.gkyyz.2021.000024.

    ZHANG Ye. Design and implementation of radio frequency fingerprint identification system based on deep learning[D]. [Master dissertation], University of Chinese of Academy of Science (National Space Science Center, Chinese Academy of Sciences), 2021. doi: 10.27562/d.cnki.gkyyz.2021.000024.
    [8] 王检, 张邦宁, 魏国峰, 等. 基于Welch功率谱和卷积神经网络的通信辐射源个体识别[J]. 电讯技术, 2021, 61(10): 1197–1204. doi: 10.3969/j.issn.1001-893x.2021.10.001.

    WANG Jian, ZHANG Bangning, WEI Guofeng, et al. Communication transmitter individual identification based on Welch power spectrum and convolution neural network[J]. Telecommunication Engineering, 2021, 61(10): 1197–1204. doi: 10.3969/j.issn.1001-893x.2021.10.001.
    [9] YANG K, KANG J, JANG J, et al. Multimodal sparse representation-based classification scheme for RF fingerprinting[J]. IEEE Communications Letters, 2019, 23(5): 867–870. doi: 10.1109/LCOMM.2019.2905205.
    [10] LIN Yun, TU Ya, DOU Zheng, et al. Contour Stella image and deep learning for signal recognition in the physical layer[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(1): 34–46. doi: 10.1109/TCCN.2020.3024610.
    [11] 凌逆战. 梅尔倒谱系数(MFCC)的原理讲解及python实现[EB/OL]. https://www.cnblogs.com/LXP-Never/p/10918590.html, 2024.

    LING Nizhan. Explanation of the principle and python implementation of the Mel Frequency Cepstral Coefficients (MFCC)[EB/OL]. https://www.cnblogs.com/LXP-Never/p/10918590.html, 2024.
    [12] 张亚楠. 语音信号处理基础(十一)——梅尔倒谱系数的提取[EB/OL]. https://blog.csdn.net/qq_40644291/article/details/104417894, 2024.

    ZHANG Yanan. Fundamentals of speech signal processing (XI) - extraction of Mel frequency cepstral coefficients[EB/OL]. https://blog.csdn.net/qq_40644291/article/details/104417894, 2024.
    [13] 何正祥, 彭平安, 廖智勤. 基于梅尔倒谱系数的矿山复杂微震信号自动识别分类方法[J]. 中国安全生产科学技术, 2018, 14(12): 41–47. doi: 10.11731/j.issn.1673-193x.2018.12.006.

    HE Zhengxiang, PENG Pingan, and LIAO Zhiqin. An automatic identification and classification method of complex microseismic signals in mines based on Mel-frequency cepstral coefficients[J]. Journal of Safety Science and Technology, 2018, 14(12): 41–47. doi: 10.11731/j.issn.1673-193x.2018.12.006.
    [14] CHO K, VAN MERRIENBOER B, BAHDANAU D, et al. On the properties of neural machine translation: Encoder-Decoder approaches[C]. SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar, 2014: 103–111. doi: 10.3115/v1/W14-4012.
    [15] 生瓜蛋子. 深度探索: 机器学习门控循环单元(GRU)算法原理及其应用[EB/OL]. https://blog.csdn.net/qq_51320133/article/details/137629302, 2024.

    Raw Melon Eggs. Deep exploration: Principles of the machine learning gated recurrent unit (GRU) algorithm and its applications[EB/OL]. https://blog.csdn.net/qq_51320133/article/details/137629302, 2024.
    [16] COLAH. Understanding LSTM networks[EB/OL]. http://colah.github.io/posts/2015-08-Understanding-LSTMs/, 2015.
    [17] NEEDELL D and VERSHYNIN R. Greedy signal recovery and un-certainty principles[C]. The Conference on Computational Imaging, San Jose, USA, 2008: 68140J. doi: 10.1117/12.776996.
    [18] NEEDELL D and VERSHYNIN R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J]. Foundations of Computational Mathematics, 2009, 9(3): 317–334. doi: 10.1007/s10208-008-9031-3.
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  63
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-17
  • 修回日期:  2025-03-14
  • 网络出版日期:  2025-03-25
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回