高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向物联网的云边端协同计算中任务卸载与资源分配算法研究

施建锋 陈忻阳 李宝龙

施建锋, 陈忻阳, 李宝龙. 面向物联网的云边端协同计算中任务卸载与资源分配算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT240659
引用本文: 施建锋, 陈忻阳, 李宝龙. 面向物联网的云边端协同计算中任务卸载与资源分配算法研究[J]. 电子与信息学报. doi: 10.11999/JEIT240659
SHI Jianfeng, CHEN Xinyang, LI Baolong. Research on Task Offloading and Resource Allocation Algorithms in Cloud-edge-end Collaborative Computing for the Internet of Things[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240659
Citation: SHI Jianfeng, CHEN Xinyang, LI Baolong. Research on Task Offloading and Resource Allocation Algorithms in Cloud-edge-end Collaborative Computing for the Internet of Things[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240659

面向物联网的云边端协同计算中任务卸载与资源分配算法研究

doi: 10.11999/JEIT240659
基金项目: 国家自然科学基金(62201274, 62201275),江苏省自然科学基金(BK20210641)
详细信息
    作者简介:

    施建锋:男,副教授,研究方向为空天地一体化网络、用户为中心网络、B5G和6G网络

    陈忻阳:男,硕士生,研究方向为物联网、卫星边缘计算、资源分配

    李宝龙:男,副教授,研究方向为无线光通信、数据管理、物联网

    通讯作者:

    施建锋 jianfeng.shi@nuist.edu.cn

  • 中图分类号: TN927

Research on Task Offloading and Resource Allocation Algorithms in Cloud-edge-end Collaborative Computing for the Internet of Things

Funds: The National Natural Science Foundation of China (62201274, 62201275), The Natural Science Foundation of Jiangsu Province (BK20210641)
  • 摘要: 为满足远郊和灾区物联网(IoT)设备的时延与能耗需求,该文构建了由IoT终端、低地球轨道(LEO)卫星和云计算中心组成的新型动态卫星物联网模型。在时延、能耗等实际约束条件下,将系统时延与能耗加权和视为系统开销,构造了最小化系统开销的任务卸载、功率和计算资源联合分配问题。针对动态任务到达场景,提出一种模型辅助的自适应深度强化学习(MADRL)算法,实现任务卸载决策、通信资源和计算资源的联合配置。该算法将问题分为两部分解决,第1部分通过模型辅助、二分搜索算法和梯度下降法优化了通信资源与计算资源;第2部分通过自适应深度强化学习算法训练出Q网络以适应随机任务的到达,进行卸载决策优化。该算法实现了有效的资源分配和可靠及时的任务卸载决策,且在降低系统开销方面表现出优异的效果。仿真结果表明,引入卫星的移动性,使得系统开销降低了41%。引入星间协作技术,使系统开销降低了22.1%。此外,该文所提算法收敛性能好。与基准算法相比,该算法的系统开销降低了3%,在不同环境下的性能表现都是最优。
  • 图  1  LEO卫星s与设备m之间的几何关系

    图  2  MADRL 算法流程图

    图  3  不同学习率下的收敛性能

    图  4  不同学习率下的系统累积开销

    图  5  不同衰减因子下的系统累积开销

    图  6  卫星移动性对DQN,MADRL算法性能的影响

    图  7  ISC对DQN,MADRL算法性能的影响

    图  8  不同算法下的累积系统开销

    图  9  不同算法下系统开销与LEO卫星速率的关系

    表  1  基本符号及其含义

    符号含义
    $\mathcal{M}$设备集合
    $\mathcal{D}$灾区设备集合
    $\mathcal{R}$远郊设备集合
    $\mathcal{S}$LEO卫星集合
    $d_m^n$时隙n设备m生成任务的大小
    $c_m^n$时隙n设备m的工作负载
    $w_m^n$时隙n设备m处理任务所需CPU周期数
    $T_m^{n,\max }$时隙n设备m处理任务的最大容忍时延
    $x_m^n$时隙n设备m的任务卸载决策
    $f_m^n$时隙n设备m的CPU工作频率
    $p_m^n$时隙n设备m的传输功率
    $t_m^n$时隙n设备m的系统时延
    $e_m^n$时隙n设备m的系统能耗
    $c_m^n$时隙n设备m的系统开销
    下载: 导出CSV

    1  自适应DRL算法

     输入:开销矩阵
     (1)初始化在线网络 Q 和目标网络 Q_hat
     (2)初始化训练参数
     (3)  for episode =1 to n_ep do
     (4)   初始化状态 s
     (5)   for n=1 to N do
     (6)    根据$\varepsilon $贪婪策略选择动作a
     (7)    更新状态$ {\boldsymbol{s}}' $
     (8)   end for
     (9)  end for
     (10) if ${\mathcal{D}} $的大小≥ n_b:
     (11)  从D中随机抽取最小批量转移元组
     (12)  根据任务状态选择DQN或DDQN计算y
     (13) end if
     (14)计算损失函数${\text{Loss}}(\theta )$
     (15)更新在线网络Q
     (16)每隔X步,更新目标网络:Q_hat=Q
     (17)更新状态$ s \leftarrow s' $
     (18)返回Q网络
    下载: 导出CSV

    表  2  主要参数设置

    参数
    灾区设备数D 300
    远郊设备数R 5
    卫星服务范围半径r 1 400 km
    任务大小$d_m^n$ [1e2,1e3,1e4,1e5,1e6] bit
    任务负载$c_m^n$ [1,1.5] kcycle/bit
    最大容忍时延$T_m^{n,\max }$ [0.05,0.1] s
    电气系数${{\varepsilon }}$ 10–28
    信道带宽B 10 MHz
    天线增益G 20 dBi
    噪声温度T 290 K
    IoT设备m的最大能耗$E_m^{\max }$ 5 w
    LEO卫星s的最大能耗$E_s^{\max }$ 2 000 w
    云计算中心单核CPU工作频率$f_{\text{c}}$ 1.45 GHz
    云计算中心核心数${N_{\text{c}}}$ 256
    下载: 导出CSV
  • [1] 工业和信息化部. 物联网新型基础设施建设三年行动计划(2021-2023年)[R]. 2021.

    Ministry of Industry and Information Technology of the People's Republic of China. A three-year action plan for the construction of new IoT infrastructure[R]. 2021.
    [2] CUI Gaofeng, DUAN Pengfei, XU Lexi, et al. Latency optimization for hybrid GEO–LEO satellite-assisted IoT networks[J]. IEEE Internet of Things Journal, 2023, 10(7): 6286–6297. doi: 10.1109/JIOT.2022.3222831.
    [3] DE COLA T and BISIO I. QoS optimisation of eMBB services in converged 5G-satellite networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12098–12110. doi: 10.1109/TVT.2020.3011963.
    [4] KANEKO K, NISHIYAMA H, KATO N, et al. Construction of a flexibility analysis model for flexible high-throughput satellite communication systems with a digital channelizer[J]. IEEE Transactions on Vehicular Technology, 2018, 67(3): 2097–2107. doi: 10.1109/TVT.2017.2736010.
    [5] BOERO L, BRUSCHI R, DAVOLI F, et al. Satellite networking integration in the 5G ecosystem: Research trends and open challenges[J]. IEEE Network, 2018, 32(5): 9–15. doi: 10.1109/MNET.2018.1800052.
    [6] CHIEN W C, LAI C F, HOSSAIN M S, et al. Heterogeneous space and terrestrial integrated networks for IoT: Architecture and challenges[J]. IEEE Network, 2019, 33(1): 15–21. doi: 10.1109/MNET.2018.1800182.
    [7] RANAWEERA P, JURCUT A D, and LIYANAGE M. Survey on multi-access edge computing security and privacy[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 1078–1124. doi: 10.1109/COMST.2021.3062546.
    [8] LI Chengcheng, ZHANG Yasheng, XIE Renchao, et al. Integrating edge computing into low earth orbit satellite networks: Architecture and prototype[J]. IEEE Access, 2021, 9: 39126–39137. doi: 10.1109/ACCESS.2021.3064397.
    [9] WANG Dezhi, WANG Wei, KANG Yuhan, et al. Distributed data offloading in ultra-dense LEO satellite networks: A stackelberg mean-field game approach[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(1): 112–127. doi: 10.1109/JSTSP.2022.3226400.
    [10] TANG Zhixuan, YU Kai, YANG Guannan, et al. New bridge to cloud: An ultra-dense LEO assisted green computation offloading approach[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(2): 552–564. doi: 10.1109/TGCN.2022.3208819.
    [11] YU Shuai, GONG Xiaowen, SHI Qian, et al. EC-SAGINs: Edge-computing-enhanced space–air–ground-integrated networks for internet of vehicles[J]. IEEE Internet of Things Journal, 2022, 9(8): 5742–5754. doi: 10.1109/JIOT.2021.3052542.
    [12] LIU Yi, JIANG Li, QI Qi, et al. Energy-efficient space–air–ground integrated edge computing for internet of remote things: A federated DRL approach[J]. IEEE Internet of Things Journal, 2023, 10(6): 4845–4856. doi: 10.1109/JIOT.2022.3220677.
    [13] TANG Qingqing, FEI Zesong, LI Bin, et al. Stochastic computation offloading for LEO satellite edge computing networks: A learning-based approach[J]. IEEE Internet of Things Journal, 2024, 11(4): 5638–5652. doi: 10.1109/JIOT.2023.3307707.
    [14] ZHU Xiangming and JIANG Chunxiao. Delay optimization for cooperative multi-tier computing in integrated satellite-terrestrial networks[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(2): 366–380. doi: 10.1109/JSAC.2022.3227083.
    [15] ZHANG Shanghong, CUI Gaofeng, LONG Yating, et al. Joint computing and communication resource allocation for satellite communication networks with edge computing[J]. China Communications, 2021, 18(7): 236–252. doi: 10.23919/JCC.2021.07.019.
    [16] TANG Qingqing, FEI Zesong, LI Bin, et al. Computation offloading in LEO satellite networks with hybrid cloud and edge computing[J]. IEEE Internet of Things Journal, 2021, 8(11): 9164–9176. doi: 10.1109/JIOT.2021.3056569.
    [17] CAO Bin, ZHANG Jintong, LIU Xin, et al. Edge–cloud resource scheduling in space–air–ground-integrated networks for internet of vehicles[J]. IEEE Internet of Things Journal, 2022, 9(8): 5765–5772. doi: 10.1109/JIOT.2021.3065583.
    [18] LI Zhipeng, LI Meng, and WANG Qian. Predator–prey model based asymmetry resource allocation in satellite–terrestrial network[J]. Symmetry, 2021, 13(11): 2113. doi: 10.3390/sym13112113.
    [19] LEE Y and CHOI J P. Connectivity analysis of mega-constellation satellite networks with optical intersatellite links[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 4213–4226. doi: 10.1109/TAES.2021.3090914.
    [20] ZHANG Hangyu, LIU Rongke, KAUSHIK A, et al. Satellite edge computing with collaborative computation offloading: An intelligent deep deterministic policy gradient approach[J]. IEEE Internet of Things Journal, 2023, 10(10): 9092–9107. doi: 10.1109/JIOT.2022.3233383.
    [21] GAO Xiangqiang, HU Yingmeng, SHAO Yingzhao, et al. Hierarchical dynamic resource allocation for computation offloading in LEO satellite networks[J]. IEEE Internet of Things Journal, 2024, 11(11): 19470–19484. doi: 10.1109/JIOT.2024.3367937.
    [22] 易必杰. 面向空天地一体化网络的计算卸载策略研究[D]. [博士/硕士论文], 西安电子科技大学, 2023. doi: 10.27389/d.cnki.gxadu.2023.002544.

    YI Bijie. Research on computing offloading strategy for space-air-ground integrated network[D]. Xidian University, 2023. doi: 10.27389/d.cnki.gxadu.2023.002544.
    [23] FANG Hai, JIA Yangyang. WANG Yuanle, et al. Matching game based task offloading and resource allocation algorithm for satellite edge computing networks[C]. Proceedings of 2022 International Symposium on Networks, Computers and Communications (ISNCC), Shenzhen, China, 2022: 1–5, doi: 10.1109/ISNCC55209.2022.9851813.
    [24] 郭子桢, 梁俊, 肖楠, 等. 软件定义卫星网络多控制器可靠部署算法[J]. 西安交通大学学报, 2021, 55(2): 158–165. doi: 10.7652/xjtuxb202102019.

    GUO Zizhen, LIANG Jun, XIAO Nan, et al. Multi-controller reliable deployment algorithm for software defined satellite network[J]. Journal of Xi’an Jiaotong University, 2021, 55(2): 158–165. doi: 10.7652/xjtuxb202102019.
    [25] KUROSE J and ROSS K. Computer Networking: A Top-Down Approach[M]. 6th ed. Boston: Pearson, 2012.
    [26] 谢希仁. 计算机网络[M]. 4版. 大连: 大连理工大学出版社, 2003.

    XIE Xiren. Computer Networking[M]. 4th ed. Dalian: Dalian University of Technology Press, 2003.
    [27] QI Xiaoxin, ZHANG Bing, QIU Zhiliang, et al. Using inter-mesh links to reduce end-to-end delay in walker delta constellations[J]. IEEE Communications Letters, 2021, 25(9): 3070–3074. doi: 10.1109/LCOMM.2021.3095227.
    [28] YOU Changsheng, HUANG Kaibin, and CHAE H. Energy efficient mobile cloud computing powered by wireless energy transfer[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(5): 1757–1771. doi: 10.1109/JSAC.2016.2545382.
    [29] NOWAK R. Generalized binary search[C]. 2008 46th Annual Allerton Conference on Communication, Control, and Computing, Monticello, USA, 2008: 568–574. doi: 10.1109/ALLERTON.2008.4797609.
    [30] AVRIEL M. Nonlinear Programming: Analysis and Methods[M]. Englewood Cliffs: Prentice-Hall, 1976.
    [31] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236.
    [32] VAN HASSELT H, GUEZ A, and SILVER D. Deep reinforcement learning with double Q-learning[C]. The Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona, 2016: 2094–2100.
    [33] SHUAI Jiaqi, CUI Haixia, HE Yejun, et al. Dynamic satellite edge computing offloading algorithm based on distributed deep learning[J]. IEEE Internet of Things Journal, 2024, 11(16): 27790–27802. doi: 10.1109/JIOT.2024.3404830.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  35
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-26
  • 修回日期:  2024-12-10
  • 网络出版日期:  2024-12-17

目录

    /

    返回文章
    返回