高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同时透射反射可重构智能表面赋能移动边缘计算任务卸载研究

李斌 杨冬东

李斌, 杨冬东. 同时透射反射可重构智能表面赋能移动边缘计算任务卸载研究[J]. 电子与信息学报. doi: 10.11999/JEIT240733
引用本文: 李斌, 杨冬东. 同时透射反射可重构智能表面赋能移动边缘计算任务卸载研究[J]. 电子与信息学报. doi: 10.11999/JEIT240733
LI Bin, YANG Dongdong. Task Offloading for Simultaneously Transmitting And Reflecting Reconfigurable Intelligent Surface-assisted Mobile Edge Computing[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240733
Citation: LI Bin, YANG Dongdong. Task Offloading for Simultaneously Transmitting And Reflecting Reconfigurable Intelligent Surface-assisted Mobile Edge Computing[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240733

同时透射反射可重构智能表面赋能移动边缘计算任务卸载研究

doi: 10.11999/JEIT240733
基金项目: 国家自然科学基金(62101277)
详细信息
    作者简介:

    李斌:男,副教授,研究方向为边缘计算、无人机通信

    杨冬东:男,硕士生,研究方向为智能反射面、移动边缘计算

    通讯作者:

    李斌 bin.li@nuist.edu.cn

  • 中图分类号: TN929.5

Task Offloading for Simultaneously Transmitting And Reflecting Reconfigurable Intelligent Surface-assisted Mobile Edge Computing

Funds: The National Natural Science Foundation of China (62101277)
  • 摘要: 为弥补可重构智能表面(RIS)半空间覆盖和“乘性衰落”等不足,该文提出一种有源同时透射和反射可重构智能表面(aSTAR-RIS)技术用于提升移动边缘计算(MEC)卸载性能增益。首先,考虑MEC服务器计算资源、aSTAR-RIS能耗以及相移耦合约束,联合设计任务卸载比例、计算资源配置、多用户检测矩阵(MUD)、aSTAR-RIS相移以及用户上传功率,建立一个多变量耦合的加权总时延最小化问题。然后,借助块坐标下降法(BCD)将原问题分解为两个子问题,使用拉格朗日乘子法和罚项对偶分解法(PDD)交替优化子问题。仿真结果表明,相较于无源STAR-RIS方案,所提aSTAR-RIS辅助MEC方案加权总时延降低了12.66%。
  • 图  1  aSTAR-RIS辅助MEC系统模型

    图  2  加权总时延迭代收敛图

    图  3  各方案时延与反射单元数量关系

    图  4  不同功率约束下加权总时延与反射单元数量关系

    1  求解最优任务卸载比和MEC计算资源分配算法

     初始化优化变量,${n_1} = 0$,收敛阈值$ {\varepsilon }_{1}={10}^{-4} $
     步骤1 利用式(3)计算${R_{\tau ,i}}$,根据式(9)对${{\boldsymbol{\alpha}} ^{({n_1})}}$进行更新;
     步骤2 利用二分法求得${\mu ^{({n_1})}}$,根据式(12)计算${{\boldsymbol{f}}^{\text{e}}}^{({n_1})}$;
     步骤3 计算$ {\varepsilon }^{({n}_{1})} $,若$ {\varepsilon }^{({n}_{1})}\ge {\varepsilon }_{1} $且${n_1} \le n_1^{\max }$,令${n_1} = {n_1} + 1$,
     回到步骤1;
     步骤4 输出$({{\boldsymbol{\alpha}} ^*},{{\boldsymbol{f}}^{\text{e}}}^*)$
    下载: 导出CSV

    2  MUD矩阵、aSTAR-RIS相移和用户上传功率交替优化算法

     初始化优化变量,${n_2} = 0$,收敛阈值$ \zeta ={\varepsilon }_{2}={\varepsilon }_{3}={10}^{-4} $,
     $\rho = 10$
     步骤1 根据式(20)更新$ {{\boldsymbol{W}}^{({n_2})}} $;
     步骤2 解决问题式P2.5更新$\{ {{\boldsymbol{\theta}} _{\text{t}}}^{({n_2})},{{\boldsymbol{\theta}} _{\text{r}}}^{({n_2})}\} $;
     步骤3 更新$\left\{ {\tilde {\boldsymbol{\psi}} _{\text{t}}^{({n_2})},\tilde{\boldsymbol{ \psi}} _{\text{r}}^{({n_2})}} \right\}$和$\left\{ {{{\tilde {\boldsymbol{\beta}} }_{\text{t}}}^{({n_2})},{{\tilde {\boldsymbol{\beta }}}_{\text{r}}}^{({n_2})}} \right\}$;
     步骤4 解决问题式P2.8更新$ {{\boldsymbol{p}}^{({n_2})}} $;
     步骤5 更新辅助变量${{\boldsymbol{\varphi}} ^{({n_2})}}$;
     步骤6 计算$ {\varepsilon }^{\left({n}_{2}\right)} $,若$ {\varepsilon }^{\left({n}_{2}\right)} \gt {\varepsilon }_{2} $,且${n_2} \le n_2^{{\text{max}}}$,令
     ${n_2} = {n_2} + 1$,回到步骤1;
     步骤7 更新$ {{\boldsymbol{\lambda}} ^{({n_2})}} $, $ {{\boldsymbol{\xi}} ^{({n_2})}} $,若$ \left|{\lambda }_{k}^{({n}_{2})}{R}_{k}^{({n}_{2})}-1\right| \gt {\varepsilon }_{2} $或
     $ \left|{\xi }_{k}^{({n}_{2})}{R}_{k}^{({n}_{2})}-{\varpi }_{k}{\alpha }_{k}{L}_{k}\right| \gt {\varepsilon }_{2} $,令${n_2} = {n_2} + 1$,回到步骤1;
     步骤8 若$ \upsilon \le \zeta $, $ {{\boldsymbol{\eta}} _{\,\tau }} = {{\boldsymbol{\eta}} _{\,\tau }} + \dfrac{1}{\rho }({\tilde {\boldsymbol{\theta}} _\tau } - {{\boldsymbol{\theta}} _\tau }) $,否则设置$ \rho = c\rho $;
     步骤9 $ \zeta = 0.9\upsilon $,若$ \upsilon \gt {\varepsilon }_{3} $,令${n_2} = 0$,回到步骤1;
     输出 $ \left( {{{\boldsymbol{W}}^*},{{\boldsymbol{\theta}} _{\text{t}}}^*,{{\boldsymbol{\theta}} _{\text{r}}}^*,{{\boldsymbol{p}}^*}} \right) $
    下载: 导出CSV

    3  整体算法

     初始化优化变量,${n_3} = 0$,收敛阈值$ \varepsilon ={10}^{-4} $
     步骤1 根据算法1,给定$ {{\boldsymbol{W}}^{({n_3} - 1)}} $, ${{\boldsymbol{\theta}} _{\text{t}}}^{({n_3} - 1)}$, ${{\boldsymbol{\theta}} _{\text{r}}}^{({n_3} - 1)}$,
     $ {{\boldsymbol{p}}^{({n_3} - 1)}} $优化${{\boldsymbol{\alpha}} ^{({n_3})}}$, ${{\boldsymbol{f}}^{\text{e}}}^{({n_3})}$;
     步骤2 根据算法2,给定${{\boldsymbol{\alpha}} ^{({n_3})}}$, ${{\boldsymbol{f}}^{\text{e}}}^{({n_3})}$优化$ {{\boldsymbol{W}}^{({n_3})}} $, ${{\boldsymbol{\theta }}_{\text{t}}}^{({n_3})}$,
     ${{\boldsymbol{\theta}} _{\text{r}}}^{({n_3})}$, ${{\boldsymbol{p}}^{({n_3})}}$;
     步骤3 计算$ {\varepsilon }^{\left({n}_{3}\right)} $,若$ {\varepsilon }^{\left({n}_{3}\right)} \gt \varepsilon $且$ {n_3} \le n_3^{\max } $,令${n_3} = {n_3} + 1$,
     回到步骤1;
     输出:$\left( {{{\boldsymbol{\alpha}} ^*},{{\boldsymbol{f}}^{\text{e}}}^*,{{\boldsymbol{W}}^*},{{\boldsymbol{\theta}} _{\text{t}}}^*,{{\boldsymbol{\theta}} _{\text{r}}}^*,{{\boldsymbol{p}}^*}} \right)$
    下载: 导出CSV
  • [1] GUO Tianhao, LI Xianzhong, MEI Muyu, et al. Joint communication and sensing design in coal mine safety monitoring: 3-D phase beamforming for RIS-assisted wireless networks[J]. IEEE Internet of Things Journal, 2023, 10(13): 11306–11315. doi: 10.1109/JIOT.2023.3242340.
    [2] ZHANG Qian, LIU Ju, TANG Haoge, et al. Practical RIS-aided multiuser communications with imperfect CSI: Practical model, amplitude feedback, and beamforming optimization[J]. IEEE Transactions on Wireless Communications, 2024, 23(10): 15245–15260. doi: 10.1109/TWC.2024.3427695.
    [3] GUO Tianhao, WANG Yujie, XU Lexi, et al. Joint communication and sensing design for multihop RIS-aided communication systems in underground coal mines[J]. IEEE Internet of Things Journal, 2023, 10(22): 19533–19544. doi: 10.1109/JIOT.2023.3269947.
    [4] ZHANG Zijian, DAI Linglong, CHEN Xibi, et al. Active RIS vs. passive RIS: Which will prevail in 6G?[J]. IEEE Transactions on Communications, 2023, 71(3): 1707–1725. doi: 10.1109/TCOMM.2022.3231893.
    [5] PENG Zhangjie, WENG Ruisong, ZHANG Zhenkun, et al. Active reconfigurable intelligent surface for mobile edge computing[J]. IEEE Wireless Communications Letters, 2022, 11(12): 2482–2486. doi: 10.1109/LWC.2022.3204656.
    [6] YU Jiaxin, ZHU Jia, LI Yizhi, et al. Computation efficiency optimization for active-RIS-assisted mobile edge computing systems[C]. IEEE 23rd International Conference on Communication Technology (ICCT), Wuxi, China, 2023: 770–774. doi: 10.1109/ICCT59356.2023.10419690.
    [7] 温陈驰, 左加阔, 鲍楠, 等. 基于STARS的安全认知无线电联合波束成形优化算法[J]. 物联网学报, 2024, 8(1): 136–146. doi: 10.11959/j.issn.2096-3750.2024.00347.

    WEN Chenchi, ZUO Jiakuo, BAO Nan, et al. Joint beamforming optimization algorithm for secure cognitive radio based on STARS[J]. Chinese Journal on Internet of Things, 2024, 8(1): 136–146. doi: 10.11959/j.issn.2096-3750.2024.00347.
    [8] LIU Zhenrong, LI Zongze, WEN Miaowen, et al. STAR-RIS-aided mobile edge computing: Computation rate maximization with binary amplitude coefficients[J]. IEEE Transactions on Communications, 2023, 71(7): 4313–4327. doi: 10.1109/TCOMM.2023.3274137.
    [9] ZHANG Qin, WANG Yuhang, LI Hai, et al. Resource allocation for energy efficient STAR-RIS aided MEC systems[J]. IEEE Wireless Communications Letters, 2023, 12(4): 610–614. doi: 10.1109/LWC.2023.3236411.
    [10] AL-HABOB A A, WAQAR O, and TABASSUM H. Latency minimization in phase-coupled STAR-RIS assisted multi-MEC server systems[C]. IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Toronto, Canada, 2023: 1–7. doi: 10.1109/PIMRC56721.2023.10294010.
    [11] XU Jiaqi, ZUO Jiakuo, ZHOU J T, et al. Active simultaneously transmitting and reflecting (STAR)-RISs: Modeling and analysis[J]. IEEE Communications Letters, 2023, 27(9): 2466–2470. doi: 10.1109/LCOMM.2023.3289066.
    [12] ZHOU Chao, LYU Bin, GONG Shimin, et al. Active STAR-RIS-assisted symbiotic radio communications under hardware impairments[J]. IEEE Communications Letters, 2023, 27(10): 2797–2801. doi: 10.1109/LCOMM.2023.3307723.
    [13] 郝万明, 曾齐, 王芳, 等. 耦合相移下有源同时反射和透射智能反射面辅助的多用户安全通信[J]. 电子与信息学报, 2024, 46(9): 3544–3552. doi: 10.11999/JEIT240149.

    HAO Wanming, ZENG Qi, WANG Fang, et al. Active simultaneously transmitting and reflecting reconfigurable intelligent surface assisted multi-user security communication with coupled phase shift[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3544–3552. doi: 10.11999/JEIT240149.
    [14] WANG Zhaolin, MU Xidong, LIU Yuanwei, et al. Coupled phase-shift STAR-RISs: A general optimization framework[J]. IEEE Wireless Communications Letters, 2023, 12(2): 207–211. doi: 10.1109/LWC.2022.3219020.
    [15] BAI Tong, PAN Cunhua, DENG Yansha, et al. Latency minimization for intelligent reflecting surface aided mobile edge computing[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2666–2682. doi: 10.1109/JSAC.2020.3007035.
    [16] GUO Huayan, LIANG Yingchang, CHEN Jie, et al. Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3064–3076. doi: 10.1109/TWC.2020.2970061.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  14
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-26
  • 修回日期:  2024-12-24
  • 网络出版日期:  2024-12-31

目录

    /

    返回文章
    返回