高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

IRS辅助的感知与隐蔽通信一体化资源分配算法

周小波 阮丹阳 周修颖 夏桂阳 束锋

周小波, 阮丹阳, 周修颖, 夏桂阳, 束锋. IRS辅助的感知与隐蔽通信一体化资源分配算法[J]. 电子与信息学报. doi: 10.11999/JEIT240643
引用本文: 周小波, 阮丹阳, 周修颖, 夏桂阳, 束锋. IRS辅助的感知与隐蔽通信一体化资源分配算法[J]. 电子与信息学报. doi: 10.11999/JEIT240643
ZHOU Xiaobo, RUAN Danyang, ZHOU Xiuying, XIA Guiyang, SHU Feng. Resource Allocation Algorithm for Intelligent Reflecting Surface-assisted Integrated Sensing and Covert Communication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240643
Citation: ZHOU Xiaobo, RUAN Danyang, ZHOU Xiuying, XIA Guiyang, SHU Feng. Resource Allocation Algorithm for Intelligent Reflecting Surface-assisted Integrated Sensing and Covert Communication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240643

IRS辅助的感知与隐蔽通信一体化资源分配算法

doi: 10.11999/JEIT240643
基金项目: 国家自然科学基金(62371004, 62301005),安徽省高校协同创新项目(GXXT-2022-055)
详细信息
    作者简介:

    周小波:男,教授,研究方向为无人机、智能反射面通信、无线物理层安全和无线隐蔽通信等

    阮丹阳:男,硕士生,研究方向为通感一体化和无线隐蔽通信

    周修颖:女,硕士生,研究方向为智能反射面通信和无线隐蔽通信

    夏桂阳:男,副教授,研究方向为无线通信安全

    束锋:男,教授,研究方向为无线信息安全传输、大规模MIMO、无人机通信、无线定位技术等

    通讯作者:

    周小波 zxb@ahau.edu.cn

  • 中图分类号: TN918.91

Resource Allocation Algorithm for Intelligent Reflecting Surface-assisted Integrated Sensing and Covert Communication

Funds: The National Natural Science Foundation of China (62371004, 62301005), The University Synergy Innovation Program of Anhui Province (GXXT-2022-055)
  • 摘要: 为了解决感知与通信一体化(ISAC)系统中的信息安全传输问题,该文研究智能反射面(IRS)辅助的感知与隐蔽通信一体化(ISACC)系统中的资源分配算法。首先,分析监测者Willie的最优检测性能,并推导了其最小检测错误概率的下界表达式。随后,推导目标估计的平均克拉美罗下界(CRLB)的解析表达式。在此基础上,构建以最小化平均CRLB为目标函数,以隐蔽需求、通信速率需求、IRS相移等为约束的优化问题。提出基于交替优化(AO)的惩罚连续凸近似(PSCA)的算法联合设计了感知信号协方差矩阵、通信信号波束成形以及IRS相移。仿真结果表明,所提IRS辅助的ISACC系统方案可以较好地均衡目标感知性能和隐蔽无线通信性能。
  • 图  1  系统模型

    图  2  IRS反射元件个数$N$与$ \overline {\rm{CRLB}} $

    图  3  隐蔽等级$\varepsilon $与$ \overline {\rm{CRLB}} $以及通信速率需求$ \varGamma $

    图  4  平均最大发射功率${P_{\max}}$与$ \overline {\rm{CRLB}} $以及信号功率

    图  5  波束图样与角度

    1  基于AO的PSCA算法

     (1) 交替迭代索引${r_0} = 0$,初始化IRS相移向量${v^{{r_0}}}$
     (2) 重复执行,初始化索引${r_1} = 0$,给定初始可行解${\tilde {\boldsymbol W}_{\rm c}}^{{r_1}}$,惩罚参数${\tau }_0^{{r_1}}$,给定${c_0} > 1$,${\tau _{0,\max}}$。
      (a)在给定的IRS相移向量${v^{{r_0}}}$下,求解优化问题(34),得到优化问题的解${\tilde {\boldsymbol W}_{\rm c}}^{{r_1} + 1}$,${{\boldsymbol{R}}}_0^{{r_1} + 1}$和${\eta _0}^{{r_1} + 1}$。
      (b)更新$ {\tau _0}^{{r_1} + 1} = \min({c_0}{\tau _0}^{{r_1}},{\tau _{0,\max}}) $,${\tilde {\boldsymbol W}_{\rm c}}^{{r_1} + 1} = {{\boldsymbol W}_{\rm c}}^{{r_1} + 1}$,${r_1} = {r_1} + 1$。
      (c)直至收敛,得到该优化问题解${{\boldsymbol{R}}}_0^{{r_0}}$和秩1解${{\boldsymbol W}_{\rm c}}^{{r_0}}$。
     (3) 重复执行,初始化索引${r_2} = 0$,给定初始可行解$ {\tilde V^{{r_2}}} $,$ {\tilde u_1}^{{r_2}} $,$ {\tilde u_2}^{{r_2}} $和$ {\tilde u_3}^{{r_2}} $,惩罚参数${\tau}_1^{{r_2}}$,给定${c_1} > 1$,${\tau _{1,\max}}$。
      (a)使用$ {\tilde {\boldsymbol{V}}^{{r_2}}} $, $ {\tilde u_1}^{{r_2}} $, $ {\tilde u_2}^{{r_2}} $和$ {\tilde u_3}^{{r_2}} $构造$ {\mathop f\limits^ \vee _{1,i}}({\boldsymbol{V}},{u_1},{u_{i + 1}}) $,$ i = 1,2 $。
      (b)在(2)得到的${\boldsymbol W}_{\rm c}^{{r_0}}$和${\boldsymbol{R}}_0^{{r_0}}$下,求解优化问题(45),得到优化问题的解$ {V^{{r_2} + 1}} $, $ u_1^{{r_2} + 1} $, $ u_2^{{r_2} + 1} $, $ u_3^{{r_2} + 1} $和$\eta _1^{{r_2} + 1}$。
      (c)更新$ \tau _1^{{r_2} + 1} = \min({c_1}\tau _1^{{r_2}},{\tau _{1,\max}}) $, $ {\tilde {\boldsymbol{V}}^{{r_2} + 1}} = {{\boldsymbol{V}}^{{r_2} + 1}} $,$ {\tilde u_1}^{{r_2} + 1} = u_1^{{r_2} + 1} $, $ {\tilde u_2}^{{r_2} + 1} = u_2^{{r_2} + 1} $, $ {\tilde u_3}^{{r_2} + 1} = u_3^{{r_2} + 1} $, ${r_2} = {r_2} + 1$。
      (d)直至收敛,得到该优化问题秩1解$ {{\boldsymbol{V}}^{{r_0}}} $,可以直接通过分解$ {{\boldsymbol{V}}^{{r_0}}} $得到${{\boldsymbol{v}}^{{r_0}}}$。
     (4) 更新${r_0} = {r_0} + 1$。
     (5) 直至收敛。
    下载: 导出CSV
  • [1] LIU Fan, MASOUROS C, PETROPULU A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communications, 2020, 68(6): 3834–3862. doi: 10.1109/TCOMM.2020.2973976.
    [2] DELIGIANNIS A, DANIYAN A, LAMBOTHARAN S, et al. Secrecy rate optimizations for MIMO communication radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2481–2492. doi: 10.1109/TAES.2018.2820370.
    [3] SU Nanchi, LIU Fan, MASOUROS C, et al. Secure dual-functional radar-communication transmission: Hardware-efficient design[C]. Proceedings of 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2021: 629–633. doi: 10.1109/IEEECONF53345.2021.9723251.
    [4] LUO Dongqi, YE Zixuan, SI Binqiang, et al. Secure transmit beamforming for radar-communication system without eavesdropper CSI[J]. IEEE Transactions on Vehicular Technology, 2022, 71(9): 9794–9804. doi: 10.1109/TVT.2022.3182874.
    [5] HUA Meng, WU Qingqing, CHEN Wen, et al. Secure intelligent reflecting surface-aided integrated sensing and communication[J]. IEEE Transactions on Wireless Communications, 2024, 23(1): 575–591. doi: 10.1109/TWC.2023.3280179.
    [6] SU Nanchi, LIU Fan, and MASOUROS C. Sensing-assisted eavesdropper estimation: An ISAC breakthrough in physical layer security[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 3162–3174. doi: 10.1109/TWC.2023.3306029.
    [7] DONG Fuwang, WANG Wei, LI Xin, et al. Joint beamforming design for dual-functional MIMO radar and communication systems guaranteeing physical layer security[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(1): 537–549. doi: 10.1109/TGCN.2022.3233863.
    [8] ZHOU Xiaobo, YAN Shihao, WU Qingqing, et al. Intelligent reflecting surface (IRS)-aided covert wireless communications with delay constraint[J]. IEEE Transactions on Wireless Communications, 2022, 21(1): 532–547. doi: 10.1109/TWC.2021.3098099.
    [9] HU Jinsong, YAN Shihao, ZHOU Xiaobo, et al. Covert communications without channel state information at receiver in IoT systems[J]. IEEE Internet of Things Journal, 2020, 7(11): 11103–11114. doi: 10.1109/JIOT.2020.2994441.
    [10] YAN Shihao, ZHOU Xiangyun, HU Jinsong, et al. Low probability of detection communication: Opportunities and challenges[J]. IEEE Wireless Communications, 2019, 26(5): 19–25. doi: 10.1109/MWC.001.1900057.
    [11] HU Jinsong, LIN Qingzhuan, YAN Shihao, et al. Covert transmission via integrated sensing and communication systems[J]. IEEE Transactions on Vehicular Technology, 2024, 73(3): 4441–4446. doi: 10.1109/TVT.2023.3326455.
    [12] MA Shuai, SHENG Haihong, YANG Ruixin, et al. Covert beamforming design for integrated radar sensing and communication systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 718–731. doi: 10.1109/TWC.2022.3197940.
    [13] LIN Qingzhuan, HU Jinsong, YAN Shihao, et al. Intelligent reflecting surface aided covert transmission scheme with integrated sensing and communication[C]. Proceedings of 2023 9th International Conference on Computer and Communications (ICCC), Chengdu, China, 2023: 407–412. doi: 10.1109/ICCC59590.2023.10507472.
    [14] SONG Xianxin, XU Jie, LIU Fan, et al. Intelligent reflecting surface enabled sensing: Cramér-Rao bound optimization[J]. IEEE Transactions on Signal Processing, 2023, 71: 2011–2026. doi: 10.1109/TSP.2023.3280715.
    [15] YU Zhiyuan, REN Hong, PAN Cunhua, et al. Active RIS-aided ISAC systems: Beamforming design and performance analysis[J]. IEEE Transactions on Communications, 2024, 72(3): 1578–1595. doi: 10.1109/TCOMM.2023.3332856.
    [16] SONG Xianxin, HAN Xiao, and XU Jie. Cramér-Rao bound minimization for IRS-enabled multiuser integrated sensing and communication with extended target[C]. Proceedings of ICC 2023-IEEE International Conference on Communications, Rome, Italy, 2023: 5725–5730. doi: 10.1109/ICC45041.2023.10279464. (查阅网上资料,不确定标黄作者是否正确,请确认) .
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  36
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-23
  • 修回日期:  2024-12-26
  • 网络出版日期:  2025-01-06

目录

    /

    返回文章
    返回