高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

RIS辅助通信场景中一种基于展开信道的物理层密钥生成方法

杨立君 陈子硕 陆海涛 郭林

杨立君, 陈子硕, 陆海涛, 郭林. RIS辅助通信场景中一种基于展开信道的物理层密钥生成方法[J]. 电子与信息学报. doi: 10.11999/JEIT240988
引用本文: 杨立君, 陈子硕, 陆海涛, 郭林. RIS辅助通信场景中一种基于展开信道的物理层密钥生成方法[J]. 电子与信息学报. doi: 10.11999/JEIT240988
YANG Lijun, CHEN Zishuo, LU Haitao, GUO Lin. An Unfolded Channel-based Physical Layer Key Generation Method For Reconfigurable Intelligent Surface-Assisted Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240988
Citation: YANG Lijun, CHEN Zishuo, LU Haitao, GUO Lin. An Unfolded Channel-based Physical Layer Key Generation Method For Reconfigurable Intelligent Surface-Assisted Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240988

RIS辅助通信场景中一种基于展开信道的物理层密钥生成方法

doi: 10.11999/JEIT240988
基金项目: 国家自然科学基金( 62372244, 62172235),中兴通讯产学研(2023ZTE08-02),国家重点研发计划(2021YFB3101100),江苏省重点研发计划重点项目(BE2023025),南京邮电大学校级自然科学基金(NY222132),江苏省研究生科研与实践创新计划项目(KYCX23_1057)
详细信息
    作者简介:

    杨立君:女,副教授,研究方向为无线网络与信息安全

    陈子硕:男,硕士生,研究方向为物理层密钥生成

    陆海涛:男,高级工程师,研究方向为 5G/B5G/6G 通信安全技术

    郭林:男,讲师,研究方向为MIMO天线系统及安全技术

    通讯作者:

    郭林 guolin@njupt.edu.cn

  • 中图分类号: TN92

An Unfolded Channel-based Physical Layer Key Generation Method For Reconfigurable Intelligent Surface-Assisted Communication Systems

Funds: The National Natural Science Foundation of China(62372244, 62172235), The ZTE Industry-university-Research Fund (2023ZTE08-02), The National Key Research and Development Program of China(2021YFB3101100), The Primary Research & Development Plan of Jiangsu Province (BE2023025), The Natural Science Foundation of Nanjing University of Posts and Telecommunications (NY222132), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX23_1057)
  • 摘要: 在可重构智能超表面(RIS)辅助的通信场景中,基站(BS)与RIS的位置通常保持相对静止,而终端(UE)则处于移动状态。两段时变性不一致的信道级联会引起信道信息熵的损失,从而造成物理层密钥容量的劣化。针对该问题,该文首先从理论上分析了信道级联对密钥容量造成的劣化效应;为了缓解这一效应,该文提出一种基于展开信道的密钥生成方法,通过展开信道估计和相移矩阵的分离,充分利用了展开信道的信息熵;最后对级联信道劣化效应进行了仿真验证,并对所提出的方案进行了性能评估。仿真结果显示,与直接采用级联信道作为密钥源相比,该文所提方案在2 dB信噪比条件下,密钥生成率提升了72%。这一结果表明,该文方案能有效改善信道劣化效应,显著提高密钥生成效率。
  • 图  1  系统模型

    图  2  方案流程框图

    图  3  1个相干时间内进行的2阶段信道估计的时间轴

    图  4  基于PARAFAC分解的信道估计方法在1个相干时间内的时间块划分

    图  5  第1阶段信道估计的时间轴

    图  6  P轮信道估计所得接收信号经过导频逆运算构建的3维张量Z

    图  7  展开信道与级联信道密钥容量对比

    图  8  不同方案的密钥生成率对比图

    图  9  以DCT去冗余时两种方案密钥不一致率对比

    图  10  本文方案在3种去冗余方法下的密钥不一致率

    图  11  密钥生成率随RIS配置矩阵数量的变化图

  • [1] ZHANG Junqing, DUONG T Q, MARSHALL A, et al. Key generation from wireless channels: A review[J]. IEEE Access, 2016, 4: 614–626. doi: 10.1109/ACCESS.2016.2521718.
    [2] XIA Enjun, HU Binjie, and SHEN Qiaoqiao. A survey of physical layer secret key generation enhanced by intelligent reflecting surface[J]. Electronics, 2024, 13(2): 258. doi: 10.3390/electronics13020258.
    [3] SONI A, UPADHYAY R, and KUMAR A. Low complexity preprocessing approach for wireless physical layer secret key extraction based on PCA[J]. Wireless Personal Communications, 2022, 125(3): 2865–2888. doi: 10.1007/s11277-022-09689-9.
    [4] YASUKAWA S, IWAI H, and SASAOKA H. Adaptive key generation in secret key agreement scheme based on the channel characteristics in OFDM[C]. Proceedings of 2008 International Symposium on Information Theory and Its Applications, Auckland, New Zealand, 2008: 1–6. doi: 10.1109/ISITA.2008.4895646.
    [5] LIU Zehui, GUO Min, and JU Yun. Physical layer key generation method based on SVD pre-processing[J]. Journal of Cyber Security and Mobility, 2022, 11(6): 777–794. doi: 10.13052/jcsm2245-1439.1163.
    [6] LI Guyue, HU Aiqun, PENG Linning, et al. The optimal preprocessing approach for secret key generation from OFDM channel measurements[C]. Proceedings of 2016 IEEE Globecom Workshops, Washington, USA, 2016: 1–6. doi: 10.1109/GLOCOMW.2016.7849063.
    [7] SHARMA R and UPADHYAY R. Physical layer secure key generation with nonlinear preprocessing of RSS for power constraint wireless networks[J]. International Journal of Communication Systems, 2021, 34(17): e4985. doi: 10.1002/dac.4985.
    [8] CHEN Yanru, CHEN Zhengyu, ZHANG Yuanyuan, et al. Physical layer key generation scheme for MIMO system based on feature fusion autoencoder[J]. IEEE Internet of Things Journal, 2023, 10(16): 14886–14895. doi: 10.1109/JIOT.2023.3288641.
    [9] WANG Tianqi, WEN Chaokai, WANG Hanqing, et al. Deep learning for wireless physical layer: Opportunities and challenges[J]. China Communications, 2017, 14(11): 92–111. doi: 10.1109/CC.2017.8233654.
    [10] 张在琛, 江浩. 智能超表面使能无人机高能效通信信道建模与传输机理分析[J]. 电子学报, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.

    ZHANG Zaichen and JIANG Hao. Channel modeling and characteristics analysis for high energy- efficient RIS-assisted UAV communications[J]. Acta Electronica Sinica, 2023, 51(10): 2623–2634. doi: 10.12263/DZXB.20221352.
    [11] 唐杰, 文红, 宋欢欢, 等. 基于智能反射表面辅助的MIMO无线通信密钥快速生成[J]. 电子与信息学报, 2022, 44(7): 2264–2272. doi: 10.11999/JEIT210442.

    TANG Jie, WEN Hong, SONG Huanhuan, et al. MIMO fast wireless secret key generation based on intelligent reflecting surface[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2264–2272. doi: 10.11999/JEIT210442.
    [12] DE ARAÚJO G T and DE ALMEIDA A L F. PARAFAC-based channel estimation for intelligent reflective surface assisted MIMO system[C]. Proceedings of the 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop, Hangzhou, China, 2020: 1–5. doi: 10.1109/SAM48682.2020.9104260.
    [13] DE ALMEIDA A L F, FAVIER G, DA COSTA J P J, et al. Overview of tensor decompositions with applications to communications[M]. COELHO R F, NASCIMENTO V H, DE QUEIROZ R L, et al. Signals and Images: Advances and Results in Speech, Estimation, Compression, Recognition, Filtering, and Processing. Boca Raton, USA: CRC-Press, 2016: 325–356. doi: 10.1201/b19385-17.
    [14] WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Parallel factor decomposition channel estimation in RIS-assisted multi-user MISO communication[C]. Proceedings of the 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop, Hangzhou, China, 2020: 1–5. doi: 10.1109/SAM48682.2020.9104305.
    [15] ZHANG Junqing, LI Guyue, MARSHALL A, et al. A new frontier for iot security emerging from three decades of key generation relying on wireless channels[J]. IEEE Access, 2020, 8: 138406–138446. doi: 10.1109/access.2020.3012006.
    [16] JIN Liang, HU Xiaoyan, SUN Xiaoli, et al. Native security scheme based on physical layer chain key for encryption and authentication[C]. Proceedings of 2021 IEEE Wireless Communications and Networking Conference Workshops, Nanjing, China, 2021: 1–7. doi: 10.1109/WCNCW49093.2021.9420012.
  • 加载中
图(11)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  5
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-05
  • 修回日期:  2025-02-20
  • 网络出版日期:  2025-02-24

目录

    /

    返回文章
    返回