Tradeoff between Age of Information and Energy Efficiency for Intelligent Reflecting Surface Assisted Short Packet Communications
-
摘要: 在监控物联网中,一些感知设备需要在能耗受限条件下及时地将采集信息回传给接入节点(AP),信息年龄(AoI)和能量效率(EE)对系统都很重要。该文研究了多设备监控物联网中时效与能效之间的折衷问题,其中感知设备在智能反射面(IRS)辅助下通过短包传输监控信息给AP。为了避免多个感知设备占用同一资源块导致包的碰撞,该文提出了一个接入控制协议,并推导了平均AoI和EE的闭式表达式。在此基础上,引入了平均AoI和EE之比这个指标,通过优化传输功率来最小化平均AoI和EE之比,以折衷时效性能与能效性能。仿真结果验证了该文理论分析的正确性,并且表明所提协议能够实现更好的时效和能效性能。此外,所提算法能够有效找出最优的时效-能效折衷点。Abstract: In monitoring Internet of Things (IoT), the sensor devices need to transmit collected information back to the Access Point (AP) in a timely manner under energy-limited conditions, both the Age of Information (AoI) and Energy Efficiency (EE) are important to the systems. The AoI and EE tradeoff for multi-device monitoring systems is investigated in this paper, where the sensor devices transmit monitoring information to the AP via short packets with the assistance of an Intelligent Reflective Surface (IRS). To avoid packet collisions caused by multiple devices occupying the same resource block, an access control protocol is proposed, and the closed-form expressions for average AoI and EE are derived. On this basis, the average AoI-EE ratio is introduced and is minimized to trade off AoI and EE by optimizing the transmission power. Simulation results verify the correctness of our theoretical analysis and demonstrate that the proposed scheme can achieve better AoI and EE performances. Moreover, the proposed algorithm is able to find the optimal AoI and EE tradeoff point.
-
1 信号传输功率优化算法
初始化:$ {P_{{\text{low}}}} = {\sigma ^2}u/{\left( {{\varPsi } - \sqrt {\varTheta } } \right)^2} $, $ {P_{{\mathrm{up}}}} = {\sigma ^2}u/{\left( {\varPsi - 3\sqrt \varTheta } \right)^2} $ Repeat If $ {\left. {{\text{d}}\lambda /{\text{d}}P} \right|_{P = \left( {{P_{{\text{low}}}} + {P_{{\text{up}}}}} \right)/2}} < 0 $ $ {P_{{\text{low}}}} = \left( {{P_{{\text{low}}}} + {P_{{\text{up}}}}} \right)/2 $ Else $ {P_{{\text{up}}}} = \left( {{P_{{\text{low}}}} + {P_{{\text{up}}}}} \right)/2 $ Until $ {P_{{\text{up}}}} - {P_{{\text{low}}}} \le \delta $ 输出:最优信号传输功率为$ {P^ * } = \left( {{P_{{\text{low}}}} + {P_{{\text{up}}}}} \right)/2 $ -
[1] XIE Mangang, JIA Xiangdong, YIN Jiaxiang, et al. Age of information for partial earliest relay aided short packet status update with energy harvesting[J]. IEEE Transactions on Wireless Communications, 2024, 23(1): 699–719. doi: 10.1109/TWC.2023.3281736. [2] XIONG Qinqin, ZHU Xu, JIANG Yufei, et al. Status prediction and data aggregation for AoI-oriented short-packet transmission in industrial IoT[J]. IEEE Transactions on Communications, 2023, 71(1): 611–625. doi: 10.1109/TCOMM.2022.3226188. [3] WANG Jia, CAO Xianghui, YIN Bo, et al. Sleep–wake sensor scheduling for minimizing AoI-penalty in industrial internet of things[J]. IEEE Internet of Things Journal, 2022, 9(9): 6404–6417. doi: 10.1109/JIOT.2021.3112211. [4] XIE Mangang, GONG Jie, JIA Xiangdong, et al. Age and energy analysis for L th best relay enabled cooperative status update systems with short packet communications[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6294–6308. doi: 10.1109/TVT.2022.3233406. [5] KAUL S, YATES R, and GRUTESER M. Real-time status: How often should one update?[C]. 2012 IEEE INFOCOM, Orlando, America, 2012: 2731–2735. doi: 10.1109/INFCOM.2012.6195689. [6] YU Baoquan, CAI Yueming, DIAO Xianbang, et al. Adaptive packet length adjustment for minimizing age of information over fading channels[J]. IEEE Transactions on Wireless Communications, 2023, 22(10): 6641–6653. doi: 10.1109/TWC.2023.3244930. [7] 于宝泉, 杨炜伟, 王权, 等. 无人机辅助通感一体化系统中的信息年龄分析优化[J]. 电子与信息学报, 2024, 46(5): 1996–2003. doi: 10.11999/JEIT231175.YU Baoquan, YANG Weiwei, WANG Quan, et al. Age of information analysis and optimization in unmanned aerial vehicles-assisted integrated sensing and communication systems[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1996–2003. doi: 10.11999/JEIT231175. [8] XIE Mangang, GONG Jie, JIA Xiangdong, et al. Age and energy tradeoff for multicast networks with short packet transmissions[J]. IEEE Transactions on Communications, 2021, 69(9): 6106–6119. doi: 10.1109/TCOMM.2021.3092758. [9] CAO Jie, ZHU Xu, SUN Sumei, et al. Toward industrial metaverse: Age of information, latency and reliability of short-packet transmission in 6G[J]. IEEE Wireless Communications, 2023, 30(2): 40–47. doi: 10.1109/MWC.2001.2200396. [10] 陈泳, 蔡跃明, 王萌. 认知物联网短包通信中双向中继系统的信息年龄分析[J]. 电子与信息学报, 2023, 45(12): 4254–4261. doi: 10.11999/JEIT221377.CHEN Yong, CAI Yueming, and WANG Meng. Age of information for short-packet two-way relay system in cognitive IoT network[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4254–4261. doi: 10.11999/JEIT221377. [11] DURISI G, KOCH T, and POPOVSKI P. Toward massive, ultrareliable, and low-latency wireless communication with short packets[J]. Proceedings of the IEEE, 2016, 104(9): 1711–1726. doi: 10.1109/JPROC.2016.2537298. [12] POLYANSKIY Y, POOR H V, and VERDU S. Channel coding rate in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2307–2359. doi: 10.1109/TIT.2010.2043769. [13] CHEN Guangji, WU Qingqing, LIU Ruiqi, et al. IRS aided MEC systems with binary offloading: A unified framework for dynamic IRS beamforming[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(2): 349–365. doi: 10.1109/JSAC.2022.3228605. [14] ZHANG Yangyi, GUAN Xinrong, WU Qingqing, et al. Optimizing age of information in UAV-mounted IRS assisted short packet systems[J]. IEEE Transactions on Vehicular Technology, 2024, 73(11): 17760–17764. doi: 10.1109/TVT.2024.3417701. [15] GUAN Xinrong, WU Qingqing, and ZHANG Rui. Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not?[J]. IEEE Wireless Communications Letters, 2020, 9(6): 778–782. doi: 10.1109/LWC.2020.2969629. [16] HASHEMI R, ALI S, MAHMOOD N H, et al. Average rate and error probability analysis in short packet communications over RIS-aided URLLC systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10320–10334. doi: 10.1109/TVT.2021.3105878. [17] WANG Manlin, XIA Bin, YAO Yao, et al. Fundamental limit among covertness, reliability, latency and throughput for IRS-enabled short-packet communications[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 3886–3900. doi: 10.1109/TWC.2023.3312796. [18] SINGH K, SINGH S K, and LI C P. On the performance analysis of RIS-assisted infinite and finite blocklength communication in presence of an eavesdropper[J]. IEEE Open Journal of the Communications Society, 2023, 4: 854–872. doi: 10.1109/OJCOMS.2023.3262485. [19] LE N P and LE K N. Distributed-RIS assisted wireless powered communication networks in the finite blocklength regim[J]. IEEE Communications Letters, 2022, 26(12): 2884–2888. doi: 10.1109/LCOMM.2022.3205005. [20] YU Baoquan, CAI Yueming, and WU Dan. Joint access control and resource allocation for short-packet-based mMTC in status update systems[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(3): 851–865. doi: 10.1109/JSAC.2020.3018801. [21] GUAN Xinrong, WU Qingqing, and ZHANG Rui. Anchor-assisted channel estimation for intelligent reflecting surface aided multiuser communication[J]. IEEE Transactions on Wireless Communications, 2022, 21(6): 3764–3778. doi: 10.1109/TWC.2021.3123674. [22] REN Hong, WANG Kezhi, and PAN Cunhua. Intelligent reflecting surface-aided URLLC in a factory automation scenario[J]. IEEE Transactions on Communications, 2022, 70(1): 707–723. doi: 10.1109/TCOMM.2021.3125057.