高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向信息新鲜度保障的车联网功率控制和资源分配策略

杨鹏 康一铭 杨静 唐桐 祝志远 吴大鹏

杨鹏, 康一铭, 杨静, 唐桐, 祝志远, 吴大鹏. 面向信息新鲜度保障的车联网功率控制和资源分配策略[J]. 电子与信息学报. doi: 10.11999/JEIT240698
引用本文: 杨鹏, 康一铭, 杨静, 唐桐, 祝志远, 吴大鹏. 面向信息新鲜度保障的车联网功率控制和资源分配策略[J]. 电子与信息学报. doi: 10.11999/JEIT240698
YANG Peng, KANG Yiming, YANG Jing, TANG Tong, ZHU Zhiyuan, WU Dapeng. Resource Allocation Strategy for Information Freshness Guarantee in Internet of Vehicles[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240698
Citation: YANG Peng, KANG Yiming, YANG Jing, TANG Tong, ZHU Zhiyuan, WU Dapeng. Resource Allocation Strategy for Information Freshness Guarantee in Internet of Vehicles[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240698

面向信息新鲜度保障的车联网功率控制和资源分配策略

doi: 10.11999/JEIT240698
基金项目: 国家自然科学基金项目(U24A20211, 62271096, U20A20157),重庆市自然科学基金(CSTB2023NSCQ-LZX0134, CSTB2024NSCQ-LZX0124),重庆市高校创新研究群体项目(CXQT20017),重邮信通青创团队支持计划(SCIE-QN-2022-04)
详细信息
    作者简介:

    杨鹏:男,高级工程师,研究方向为标识解析、工业软件数据集成

    康一铭:男,硕士生,研究方向为车联网资源管理

    唐桐:男,讲师,研究方向为视频编码传输等

    祝志远:男,讲师,研究方向为可信边缘计算

    吴大鹏:男,教授,研究方向为泛在无线网络、社会计算等

    通讯作者:

    吴大鹏 wudp@cqupt.edu.cn

  • 中图分类号: TN929.5

Resource Allocation Strategy for Information Freshness Guarantee in Internet of Vehicles

Funds: The National Natural Science Foundation of China (U24A20211, 62271096, U20A20157), The Natural Science Foundation of Chongqing (CSTB2023NSCQ-LZX0134, CSTB2024NSCQ-LZX0124), The University Innovation Research Group Project of Chongqing (CXQT20017), Youth Innovation Group Support Program of ICE Discipline of CQUPT (SCIE-QN-2022-04)
  • 摘要: 在差异化服务共存的车联网场景中,针对基于平均信息年龄(AoI)优化无法降低极端事件发生概率的问题,该文提出一种信息新鲜度保障的用户功率控制和资源分配策略。首先,根据系统模型刻画出车辆到车辆(V2V)用户状态更新信息新鲜度约束下最大化车辆到基站(V2I)用户体验质量(QoE)的问题。然后,结合与AoI中断约束等价的队列积压约束,并引入极值理论以优化AoI尾部分布。接着,基于李雅普诺夫优化方法将原问题转化最小化李雅普诺夫漂移加惩罚函数的问题,在此基础上求解最优的用户发射功率。最后,在构建超图的基础上,提出了一种基于遗传算法改进粒子群算法(GA-PSO)的资源分配策略确定最优的用户信道复用方式。仿真结果表明,相比于基准方案,所提方案能够在降低V2V链路AoI中断的极端事件发生概率的同时,提高约7.03%的V2I链路信道容量,实现V2I用户平均QoE提升。
  • 图  1  系统模型

    图  2  V2I-Channel-V2V 3维匹配图

    图  4  不同算法下所有V2I用户平均QoE的CDF对比

    图  3  GA-PSO算法流程

    图  5  不同车速下所有V2I用户的平均QoE对比

    图  6  所提算法与基准算法AoI的CCDF对比

    图  7  所提算法与基准算法信标积压的CCDF对比

    图  8  不同车速下AoI 的CDF对比

    图  9  状态更新到达率与AoI的权衡

    表  1  仿真参数

    参数 取值
    载波频率 2 GHz
    带宽 10 MHz
    基站覆盖半径 500 m
    基站与公路距离 35 m
    车道宽度 4 m
    车辆天线高度 1.5 m
    车辆天线增益 3 dBi
    基站接收机噪声 5 dB
    车辆接收机噪声 9 dB
    V2I链路最大发射功率 23 dBm
    V2V链路最大发射功率 23 dBm
    V2V车辆收发距离 15 m
    噪声功率 –114 dBm
    车速 60 km/h
    时隙长度 3 ms
    最大可容忍AoI 60 ms
    AoI中断概率阈值 0.001
    状态更新到达率 125 updates/s
    每个信标数据量大小 500 Byte
    下载: 导出CSV
  • [1] MLIKA Z and CHERKAOUI S. Deep deterministic policy gradient to minimize the age of information in cellular V2X communications[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 23597–23612. doi: 10.1109/TITS.2022.3190799.
    [2] CLANCY J, MULLINS D, DEEGAN B, et al. Wireless access for V2X communications: Research, challenges and opportunities[J]. IEEE Communications Surveys & Tutorials, 2024, 26(3): 2082–2119. doi: 10.1109/COMST.2024.3384132.
    [3] Juniper Research. Connected vehicles: Operator opportunities, competitor leaderboard & market forecasts[EB/OL]. https://www.juniperresearch.com/research/telco-connectivity/operator-strategies/connected-vehicles-research-report, 2023.
    [4] FU Qiang, LIU Jiajia, and WANG Jiadai. A flexible resource allocation scheme for NR V2X based vulnerable road user protection[J]. IEEE Transactions on Vehicular Technology, 2024, 73(5): 6672–6686. doi: 10.1109/TVT.2023.3340655.
    [5] GUO Chongtao, LIANG Le, and LI G Y. Resource allocation for low-latency vehicular communications: An effective capacity perspective[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(4): 905–917. doi: 10.1109/JSAC.2019.2898743.
    [6] 许耀华, 王慧平, 王贵竹, 等. 基于图着色和三维匹配的车联网资源分配算法[J]. 系统工程与电子技术, 2023, 45(3): 869–875. doi: 10.12305/j.issn.1001-506X.2023.03.29.

    XU Yaohua, WANG Huiping, WANG Guizhu, et al. Resource allocation algorithm for internet of vehicles based on graph coloring and three-dimensional matching[J]. Systems Engineering and Electronics, 2023, 45(3): 869–875. doi: 10.12305/j.issn.1001-506X.2023.03.29.
    [7] 韩珍珍, 周末, 刘恩慧, 等. 基于用户个性化服务质量的蜂窝车联网与车载自组织网异构车联网资源分配方法[J]. 电子与信息学报, 2021, 43(5): 1339–1348. doi: 10.11999/JEIT200429.

    HAN Zhenzhen, ZHOU Mo, LIU Enhui, et al. A personalized QoS-based resource allocation for cellular-vehicle to everything network and vehicle ad-hoc network heterogeneous vehicular network[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1339–1348. doi: 10.11999/JEIT200429.
    [8] 中国信息通信研究院. 车联网白皮书(2022年)[R]. 北京: 中国信息通信研究院, 2023. (查阅网上资料, 未找到本条文献英文翻译信息, 请确认) .
    [9] 林志坚, 侯映, 曹晓晓, 等. 车联网中基于信息年龄价值的边缘缓存策略[J]. 电子学报, 2023, 51(12): 3410–3421. doi: 10.12263/DZXB.20221409.

    LIN Zhijian, HOU Ying, CAO Xiaoxiao, et al. Edge caching scheme based on value of information age in the internet of vehicles[J]. Acta Electronica Sinica, 2023, 51(12): 3410–3421. doi: 10.12263/DZXB.20221409.
    [10] YU Baoquan, CAI Yueming, WU Dan, et al. Average age of information in short packet based machine type communication[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 10306–10319. doi: 10.1109/TVT.2020.3004828.
    [11] KADOTA I and MODIANO E. Minimizing the age of information in wireless networks with stochastic arrivals[J]. IEEE Transactions on Mobile Computing, 2021, 20(3): 1173–1185. doi: 10.1109/TMC.2019.2959774.
    [12] KIM M, KIM J, KIM T, et al. Age of information based beacon transmission for reducing status update delay in platooning[J]. IEEE Transactions on Vehicular Technology, 2022, 71(10): 11306–11310. doi: 10.1109/TVT.2022.3185979.
    [13] QIN Xiaoqi, XIA Yangyang, LI Hang, et al. Distributed data collection in age-aware vehicular participatory sensing networks[J]. IEEE Internet of Things Journal, 2021, 8(19): 14501–14513. doi: 10.1109/JIOT.2021.3049999.
    [14] PENG Nuoheng, LIN Yan, ZHANG Yijin, et al. AoI-aware joint spectrum and power allocation for internet of vehicles: A trust region policy optimization-based approach[J]. IEEE Internet of Things Journal, 2022, 9(20): 19916–19927. doi: 10.1109/JIOT.2022.3172472.
    [15] WANG Jian, CAO Tengfei, WANG Xiaoying, et al. Resource scheduling in vehicular networks with age of information and channel awareness[C]. 2022 IEEE/CIC International Conference on Communications in China (ICCC), Foshan, China, 2022: 344–349. doi: 10.1109/ICCC55456.2022.9880785.
    [16] HAAN L and FERREIRA A. Extreme Value Theory: An Introduction[M]. New York: Springer, 2006. doi: 10.1007/0-387-34471-3. (查阅网上资料,未找到本条文献页码信息,请补充) .
    [17] CHAMPATI J, AL-ZUBAIDY H, and GROSS J. Statistical guarantee optimization for age of information for the D/G/1 queue[C]. IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, USA, 2018: 130–135. doi: 10.1109/INFCOMW.2018.8406909.
    [18] ABDEL-AZIZ M K, LIU Chenfeng, SAMARAKOON S, et al. Ultra-reliable low-latency vehicular networks: Taming the age of information tail[C]. 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018: 1–7. doi: 10.1109/GLOCOM.2018.8647466.
    [19] NEELY M J. Stochastic Network Optimization with Application to Communication and Queueing Systems[M]. Cham: Springer, 2010: 1–211. doi: 10.1007/978-3-031-79995-2.
    [20] 程前. 基于NOMA的车联网V2X功率控制研究[D]. [硕士论文], 北方工业大学, 2021. doi: 10.26926/d.cnki.gbfgu.2021.000491.

    CHENG Qian. Research on V2X power control of vehicle networking based on NOMA[D]. [Master dissertation], North China University of Technology, 2021. doi: 10.26926/d.cnki.gbfgu.2021.000491.
    [21] 3GPP. 3GPP TR 36.885 Study on LTE-based V2X services[S]. Sophia Antipolis: 3GPP Organizational Partners, 2016.
    [22] SUN Wanlu, YUAN Di, STRÖM E G, et al. Cluster-based radio resource management for D2D-supported safety-critical V2X communications[J]. IEEE Transactions on Wireless Communications, 2016, 15(4): 2756–2769. doi: 10.1109/TWC.2015.2509978.
    [23] LIANG Le, XIE Shijie, LI G Y, et al. Graph-based resource sharing in vehicular communication[J]. IEEE Transactions on Wireless Communications, 2018, 17(7): 4579–4592. doi: 10.1109/TWC.2018.2827958.
    [24] LIU Chenfeng and BENNIS M. Ultra-reliable and low-latency vehicular transmission: An extreme value theory approach[J]. IEEE Communications Letters, 2018, 22(6): 1292–1295. doi: 10.1109/LCOMM.2018.2828407.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  7
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-06
  • 修回日期:  2025-01-13
  • 网络出版日期:  2025-01-17

目录

    /

    返回文章
    返回