高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

组连接超对角可重构智能表面辅助的通信系统低功耗传输方法研究

王鸿 李培淇 李鹤一 王培宇

王鸿, 李培淇, 李鹤一, 王培宇. 组连接超对角可重构智能表面辅助的通信系统低功耗传输方法研究[J]. 电子与信息学报. doi: 10.11999/JEIT241029
引用本文: 王鸿, 李培淇, 李鹤一, 王培宇. 组连接超对角可重构智能表面辅助的通信系统低功耗传输方法研究[J]. 电子与信息学报. doi: 10.11999/JEIT241029
WANG Hong, LI Peiqi, LI Heyi, WANG Peiyu. Research on Low-Power Transmission Method for Group-Connected Beyond-Diagonal Reconfigurable Intelligent Surface-assisted Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241029
Citation: WANG Hong, LI Peiqi, LI Heyi, WANG Peiyu. Research on Low-Power Transmission Method for Group-Connected Beyond-Diagonal Reconfigurable Intelligent Surface-assisted Communication Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241029

组连接超对角可重构智能表面辅助的通信系统低功耗传输方法研究

doi: 10.11999/JEIT241029
基金项目: 国家自然科学基金(62171237),江苏省自然科学基金(BK20231285),江苏省研究生科研与实践创新计划(SJCX24_0289)
详细信息
    作者简介:

    王鸿:男,副教授,研究方向为6G关键技术

    李培淇:男,硕士生,研究方向为智能超表面赋能无线通信

    李鹤一:女,博士生,研究方向为智能超表面赋能无线通信、非正交多址接入

    王培宇:男,博士生,研究方向为智能超表面赋能无线通信、非正交多址接入

    通讯作者:

    李培淇 lipeiqi1213@163.com

  • 中图分类号: TN92

Research on Low-Power Transmission Method for Group-Connected Beyond-Diagonal Reconfigurable Intelligent Surface-assisted Communication Systems

Funds: The National Natural Science Foundation of China (62171237), The Natural Science Foundation of Jiangsu Provincial (BK20231285), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX24_0289)
  • 摘要: 可重构智能表面(RIS)被视为未来无线通信中前景广泛的关键技术之一。超对角可重构智能表面(BD-RIS)作为RIS的一种新型架构,相移矩阵不限于对角矩阵的结构,为通信系统设计带来了更高的自由度。该文针对组连接BD-RIS辅助的上行通信系统展开研究,通过联合优化均衡器、用户发射功率和BD-RIS的相移矩阵来降低通信系统的总发射功耗。具体来说,采用最小均方差(MMSE)均衡器使得各个用户接收信干噪比(SINR)最大,接着推导了用户发射功率与相移矩阵之间的表达式,并进一步将相移优化问题转化为无约束的单变量优化问题,最后交替优化均衡器、用户发射功率和BD-RIS相移矩阵使得系统发射功率最小。仿真结果表明,与多种基准方案相比,该文提出的组连接BD-RIS辅助的上行通信系统传输方案能有效降低系统功耗。
  • 图  1  系统模型图

    图  2  迭代次数图

    图  3  RIS单元数目和用户总发射功率关系图

    图  4  用户最低传输速率要求和用户总发射功率关系图

    表  1  仿真参数

    参数 数值
    基站到RIS的距离(m) 200
    用户到RIS的距离(m) 10~50
    噪声功率${\sigma ^2}$(dBm) –70
    LoS的相关因子 1
    莱斯因子 4
    路径损耗指数[$ {\alpha_{{\mathrm{B}},k}},{\alpha_{{\mathrm{B,I}}}},{\alpha_{{\mathrm{I}},k}} $] [3, 2.6, 2.4]
    BD-RIS参考阻抗${Z_0}$($\Omega $) 50
    下载: 导出CSV
  • [1] 马红兵, 张平, 杨帆, 等. 智能超表面技术展望与思考[J]. 中兴通讯技术, 2022, 28(3): 70–77. doi: 10.12142/ZTETJ.202203012.

    MA Hongbing, ZHANG Ping, YANG Fan, et al. Reflections on reconfigurable intelligent surface technology[J]. ZTE Technology Journal, 2022, 28(3): 70–77. doi: 10.12142/ZTETJ.202203012.
    [2] 姚建文, 王楠. 智能反射面——大有前景的6G技术[J]. 电信快报, 2020(7): 8–13. doi: 10.3969/j.issn.1006-1339.2020.07.002.

    YAO Jianwen and WANG Nan. Intelligent reflecting surface: A promising technique for 6G[J]. Telecommunications Information, 2020(7): 8–13. doi: 10.3969/j.issn.1006-1339.2020.07.002.
    [3] PAN Cunhua, REN Hong, WANG Kezhi, et al. Reconfigurable intelligent surfaces for 6G systems: Principles, applications, and research directions[J]. IEEE Communications Magazine, 2021, 59(6): 14–20. doi: 10.1109/MCOM.001.2001076.
    [4] LIU Yuanwei, LIU Xiao, MU Xidong, et al. Reconfigurable intelligent surfaces: Principles and opportunities[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1546–1577. doi: 10.1109/COMST.2021.3077737.
    [5] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
    [6] LI Hongyu, SHEN Shanpu, and CLERCKX B. Beyond diagonal reconfigurable intelligent surfaces: From transmitting and reflecting modes to single-, group-, and fully-connected architectures[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2311–2324. doi: 10.1109/TWC.2022.3210706.
    [7] NERINI M, SHEN Shanpu, LI Hongyu, et al. Beyond diagonal reconfigurable intelligent surfaces utilizing graph theory: Modeling, architecture design, and optimization[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 9972–9985. doi: 10.1109/TWC.2024.3367631.
    [8] NERINI M, SHEN Shanpu, and CLERCKX B. Closed-form global optimization of beyond diagonal reconfigurable intelligent surfaces[J]. IEEE Transactions on Wireless Communications, 2024, 23(2): 1037–1051. doi: 10.1109/TWC.2023.3285262.
    [9] LI Hongyu, SHEN Shanpu, NERINI M, et al. Beyond diagonal reconfigurable intelligent surfaces with mutual coupling: Modeling and optimization[J]. IEEE Communications Letters, 2024, 28(4): 937–941. doi: 10.1109/LCOMM.2024.3361648.
    [10] SHEN Shanpu, CLERCKX B, and MURCH R. Modeling and architecture design of reconfigurable intelligent surfaces using scattering parameter network analysis[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1229–1243. doi: 10.1109/TWC.2021.3103256.
    [11] SANTAMARIA I, SOLEYMANI M, JORSWIECK E, et al. SNR maximization in beyond diagonal RIS-assisted single and multiple antenna links[J]. IEEE Signal Processing Letters, 2023, 30: 923–926. doi: 10.1109/LSP.2023.3296902.
    [12] FANG Tianyu, MAO Yijie, SHEN Shanpu, et al. Fully connected reconfigurable intelligent surface aided rate-splitting multiple access for multi-user multi-antenna transmission[C]. 2022 IEEE International Conference on Communications Workshops (ICC Workshops), Seoul, Korea, 2022: 675–680. doi: 10.1109/ICCWorkshops53468.2022.9814551.
    [13] GUANG Zhaohui, LIU Yang, WU Qingqing, et al. Power minimization for ISAC system using beyond diagonal reconfigurable intelligent surface[J]. IEEE Transactions on Vehicular Technology, 2024, 73(9): 13950–13955. doi: 10.1109/TVT.2024.3385633.
    [14] LIU Liu, WANG Hong, and SONG Rongfang. Optimization for multi-cell NOMA systems assisted by multi-RIS with inter-RIS reflection[J]. IEEE Communications Letters, 2024, 28(1): 123–127. doi: 10.1109/LCOMM.2023.3314627.
    [15] YANG Xiaolong, WANG Hong, and FENG Youhong. Sum rate maximization for active RIS-aided uplink multi-antenna NOMA systems[J]. IEEE Wireless Communications Letters, 2023, 12(7): 1149–1153. doi: 10.1109/LWC.2023.3264516.
    [16] CHU Hongyun, PAN Xue, JIANG Jing, et al. Adaptive and robust channel estimation for IRS-aided millimeter-wave communications[J]. IEEE Transactions on Vehicular Technology, 2024, 73(7): 9411–9423. doi: 10.1109/TVT.2024.3385776.
    [17] CHU Hongyun, YANG Mengyao, PAN Xue, et al. Joint active and passive beamforming design for hybrid RIS-aided integrated sensing and communication[J]. China Communications, 2024, 21(10): 1–12. doi: 10.23919/JCC.ja.2023-0213.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  19
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-20
  • 修回日期:  2024-03-19
  • 网络出版日期:  2024-03-28

目录

    /

    返回文章
    返回