高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度熵的抗频谱感知数据篡改攻击协作频谱感知方法研究

王安义 龚健超 朱涛

侯志强, 张浪, 余旺盛, 许婉君. 基于快速傅里叶变换的局部分块视觉跟踪算法[J]. 电子与信息学报, 2015, 37(10): 2397-2404. doi: 10.11999/JEIT150183
引用本文: 王安义, 龚健超, 朱涛. 基于多尺度熵的抗频谱感知数据篡改攻击协作频谱感知方法研究[J]. 电子与信息学报. doi: 10.11999/JEIT241091
Hou Zhi-qiang, Zhang Lang, Yu Wang-sheng, Xu Wan-jun. Local Patch Tracking Algorithm Based on Fast Fourier Transform[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2397-2404. doi: 10.11999/JEIT150183
Citation: WANG Anyi, GONG Jianchao, ZHU Tao. Cooperative Spectrum Sensing Method Against Spectrum Sensing Data Falsification Attacks Based on Multiscale Entropy[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241091

基于多尺度熵的抗频谱感知数据篡改攻击协作频谱感知方法研究

doi: 10.11999/JEIT241091
基金项目: 国家自然科学基金(62471384)
详细信息
    作者简介:

    王安义:男,教授,研究方向为无线通信、智能信息处理及煤矿智能化等

    龚健超:男,硕士生,研究方向为认知无线电、频谱感知

    朱涛:男,硕士生,研究方向为认知无线电、频谱感知、深度学习

    通讯作者:

    龚健超 ggggggjc@stu.xust.edu.cn

  • 中图分类号: TN92

Cooperative Spectrum Sensing Method Against Spectrum Sensing Data Falsification Attacks Based on Multiscale Entropy

Funds: The National Natural Science Foundation of China (62471384)
  • 摘要: 针对协作频谱感知易遭受频谱感知数据篡改(SSDF)攻击导致无法准确识别恶意用户的问题,该文提出一种基于多尺度熵的协作频谱感知方法。该方法通过滑动窗对用户进行多次本地感知以获取信誉值。随后引入多尺度熵算法,对用户的感知结果进一步实施多尺度分析,利用分析结果作为权重更新信誉值,归一化处理后对用户进行判定并做出最终全局判决。仿真结果表明,对于不同的攻击策略,在攻击概率超过0.4的情况下,所提算法与其它对比算法相比恶意用户检测率分别平均提升3.56%, 0.77%和6.45%, 36.92%,具有良好的抗攻击能力。且与熵加权算法相比,其复杂度更低。
  • 图  1  本文所提算法原理

    图  2  滑动窗内各SU感知结果

    图  3  全局决策正确率在不同恶意用户比例下对比

    图  4  全局决策正确率在不同攻击概率下对比

    图  5  IA下所提算法的恶意用户检测性能

    图  6  CA下所提算法的恶意用户检测性能

    图  7  IA下不同攻击概率MU检测率对比

    图  8  IA下不同恶意用户比例MU检测率对比

    图  9  CA下不同攻击概率MU检测率对比

    1  多尺度熵算法

     初始化:恶意用户集合M为空
     (1) fort=1:Tdo
     (2)  fori=1:Ndo
     (3)   SU进行本地频谱感知,将结果上传至FC;
     (4)   FC根据上传结果ri,通过式(16)获得全局决策Dt
     (5)   计算信誉值Ri=Tt=1τi(t)/T
     (6)  end for
     (7) end for
     (8) fori=1:Ndo
     (9)   根据式(17)–式(21),计算多尺度熵MSE
     (10) 按照式(22)将式(21)化为权重,计算调整后的信誉值hi
     (11) 对hi归一化处理,得到最终信誉值Hi
     (12) If Hi>Λ then
     (13) MM+{i}
     (14) end if
     (15) end for
     (16) 通过式(25),做出最终全局决策Dt
    下载: 导出CSV

    表  1  算法数学运算次数与复杂度对比

    运算 所提算法 文献[16]算法 所提算法复杂度 文献[16]算法复杂度
    +/ (m+2)(Lm+1)2+3(GL)+T+1 NT+2N+l1 O(N((m+2)(Lm+1)2+3(GL)+T+1)) O(N(NT+2N+l)+2N2)
    × 1 2 O(N) O(N+1)
    ÷ L+7 3 O(N(L+7)) O(N+2)
    下载: 导出CSV
  • [1] SHAFIQUE K, KHAWAJA B A, SABIR F, et al. Internet of Things (IoT) for next-generation smart systems: a review of current challenges, future trends and prospects for emerging 5G-IoT scenarios[J]. IEEE Access, 2020, 8: 23022–23040. doi: 10.1109/ACCESS.2020.2970118.
    [2] KHASAWNEH M, AZAB A, ALRABAEE S, et al. Convergence of IoT and cognitive radio networks: a survey of applications, techniques, and challenges[J]. IEEE Access, 2023, 11: 71097–71112. doi: 10.1109/ACCESS.2023.3294091.
    [3] DAI M Y, WU J, LIANG X S, et al. A self-correcting cooperative spectrum sensing for cognitive radio networks in low SNR region[C]. 2023 IEEE 23rd International Conference on Communication Technology (ICCT). Wuxi, China, 2023: 1385–1389. doi: 10.1109/ICCT59356.2023.10419802.
    [4] XU Z Y, SUN Z G, GUO L L, et al. Joint spectrum sensing and spectrum access for defending massive SSDF attacks: a novel defense framework[J]. Chinese Journal of Electronics, 2022, 31(2): 240–254. doi: 10.1049/cje.2021.00.090.
    [5] FRAGKIADAKIS A G, TRAGOS E Z, and ASKOXYLAKIS I G. A survey on security threats and detection techniques in cognitive radio networks[J]. IEEE Communications Surveys & Tutorials, 2013, 15(1): 428–445. doi: 10.1109/SURV.2011.122211.00162.
    [6] 郭文祥, 余志勇, 逄晨, 等. 认知无线电频谱感知技术综述[J]. 通信技术, 2018, 51(2): 261–265. doi: 10.3969/j.issn.1002-0802.2018.02.001.

    GUO Wenxiang, YU Zhiyong, PANG Chen, et al. Overview on cognitive radio spectrum sensing technology[J]. Communications Technology, 2018, 51(2): 261–265. doi: 10.3969/j.issn.1002-0802.2018.02.001.
    [7] WU J, SONG T C, YU Y, et al. Generalized byzantine attack and defense in cooperative spectrum sensing for cognitive radio networks[J]. IEEE Access, 2018, 6: 53272–53286. doi: 10.1109/ACCESS.2018.2866485.
    [8] CHOUHAN A, PARMAR A, CAPTAIN K, et al. Defending against byzantine attacks in CRNs: PCA-based malicious user detection and weighted cooperative spectrum Sensing[J]. IEEE Wireless Communications Letters, 2024, 13(5): 1488–1492. doi: 10.1109/LWC.2024.3377275.
    [9] WU J, LI P, CHEN Y, et al. Analysis of byzantine attack strategy for cooperative spectrum sensing[J]. IEEE Communications Letters, 2020, 24(8): 1631–1635. doi: 10.1109/LCOMM.2020.2990869.
    [10] PARMAR A, SHAH K, CAPTAIN K M, et al. Gaussian mixture model-based anomaly detection for defense against byzantine attack in cooperative spectrum sensing[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(2): 499–509. doi: 10.1109/TCCN.2023.3342409.
    [11] BENEDETTO F, CORONAS P, GIUNTA G, et al. A reputation-based cooperative spectrum sensing in the presence of malicious byzantine users[C]. 2018 IEEE 87th Vehicular Technology Conference (VTC Spring). Porto, Portugal, 2018: 1–5. doi: 10.1109/VTCSpring.2018.8417486.
    [12] REN J, ZHANG Y X, YE Q, et al. Exploiting secure and energy-efficient collaborative spectrum sensing for cognitive radio sensor networks[J]. IEEE Transactions on Wireless Communications, 2016, 15(10): 6813–6827. doi: 10.1109/TWC.2016.2591006.
    [13] ZHANG Q Y, ZENG W H, QIN Z J, et al. TaP2-CSS: A trustworthy and privacy-preserving cooperative spectrum sensing solution based on blockchain[J]. IEEE Internet of Things Journal, 2024, 11(8): 14634–14646. doi: 10.1109/JIOT.2023.3344648.
    [14] CHATTERJEE P S. Systematic survey on SSDF attack and detection mechanism in cognitive wireless sensor network[C]. 2021 International Conference on Intelligent Technologies (CONIT). Hubli, India, 2021: 1–5. doi: 10.1109/CONIT51480.2021.9498386.
    [15] XIAO S F, WU J, LIN P Y, et al. Reputation-based self-differential sequential mechanism for collaborative spectrum sensing against byzantine attack in cognitive wireless sensor networks[J]. IEEE Sensors Letters, 2024, 8(10): 1–4. doi: 10.1109/LSENS.2024.3454708.
    [16] CHOUHAN A, CAPTAIN K, PARMAR A, et al. Defending cooperative spectrum sensing from byzantine attacks: An effective entropy-based weighted algorithm[J]. IEEE Wireless Communications Letters, 2023, 12(12): 2063–2067. doi: 10.1109/LWC.2023.3306814.
    [17] MA L C, XIANG Y, PEI Q Q, et al. Robust reputation-based cooperative spectrum sensing via imperfect common control channel[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 3950–3963. doi: 10.1109/TVT.2017.2763980.
    [18] FU Y H and HE Z M. Bayesian-inference-based sliding window trust model against probabilistic SSDF attack in cognitive radio networks[J]. IEEE Systems Journal, 2020, 14(2): 1764–1775. doi: 10.1109/JSYST.2019.2936263.
    [19] 宋铁成, 吴俊, 梁浩宇, 等. 基于滑动窗口的协作频谱感知对抗拜占庭攻击[J]. 信息对抗技术, 2024, 3(3): 63–78. doi: 10.12399/j.issn.2097-163x.2024.03.004.

    SONG Tiecheng, WU Jun, LIANG Haoyu, et al. Sliding window-based cooperative spectrum sensing against byzantine attack[J]. Information Countermeasure Technology, 2024, 3(3): 63–78. doi: 10.12399/j.issn.2097-163x.2024.03.004.
    [20] 孙志国, 王钊, 陈增茂, 等. 基于双重信誉值与多角度权值的抗SSDF攻击协作频谱感知方法[J]. 通信学报, 2023, 44(12): 134–145. doi: 10.11959/j.issn.1000-436x.2023213.

    SUN Zhiguo, WANG Zhao, CHEN Zengmao, et al. Double reputation and multi-angle weight-based cooperative spectrum sensing method against SSDF attacks[J]. Journal on Communications, 2023, 44(12): 134–145. doi: 10.11959/j.issn.1000-436x.2023213.
    [21] ZHANG L Y, DING G R, WU Q H, et al. Byzantine attack and defense in cognitive radio networks: A survey[J]. IEEE Communications Surveys & Tutorials, 2015, 17(3): 1342–1363. doi: 10.1109/COMST.2015.2422735.
    [22] 尹洪梅. 基于多尺度熵的水热型地热可持续取热理论及实验研究[D]. [博士论文], 天津大学, 2022. doi: 10.27356/d.cnki.gtjdu.2022.000056.

    YIN Hongmei. Theoretical and experimental study on hydrothermal geothermal sustainable heat extraction based on multi-scale entropy[D]. [Ph. D. dissertation], Tianjin University, 2022. doi: 10.27356/d.cnki.gtjdu.2022.000056.
  • 期刊类型引用(5)

    1. 蒲磊,冯新喜,侯志强,余旺盛. 基于空间可靠性约束的鲁棒视觉跟踪算法. 电子与信息学报. 2019(07): 1650-1657 . 本站查看
    2. 孙彦景,石韫开,云霄,朱绪冉,王赛楠. 基于多层卷积特征的自适应决策融合目标跟踪算法. 电子与信息学报. 2019(10): 2464-2470 . 本站查看
    3. 卢钢,彭力. 基于置信值重构的视觉目标跟踪算法. 南京理工大学学报. 2018(02): 210-216 . 百度学术
    4. 孙彦景,王赛楠,石韫开,云霄,施文娟. 基于全局背景与特征降维的视觉跟踪算法. 电子与信息学报. 2018(09): 2135-2142 . 本站查看
    5. 张园强,毕笃彦,查宇飞,库涛,刘新生. 一种利用最大间隔相关滤波的鲁棒目标跟踪算法. 空军工程大学学报(自然科学版). 2017(02): 67-73 . 百度学术

    其他类型引用(5)

  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  22
  • PDF下载量:  11
  • 被引次数: 10
出版历程
  • 收稿日期:  2024-12-10
  • 修回日期:  2025-03-03
  • 网络出版日期:  2025-03-14

目录

    /

    返回文章
    返回