高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

RIS辅助下的跨模态通信资源分配

陈鸣锴 孙振德 万雅芳

陈鸣锴, 孙振德, 万雅芳. RIS辅助下的跨模态通信资源分配[J]. 电子与信息学报. doi: 10.11999/JEIT240619
引用本文: 陈鸣锴, 孙振德, 万雅芳. RIS辅助下的跨模态通信资源分配[J]. 电子与信息学报. doi: 10.11999/JEIT240619
CHEN Mingkai, SUN Zhende, WAN Yafang. Resource Allocation for RIS-aided Cross-Model Communications[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240619
Citation: CHEN Mingkai, SUN Zhende, WAN Yafang. Resource Allocation for RIS-aided Cross-Model Communications[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240619

RIS辅助下的跨模态通信资源分配

doi: 10.11999/JEIT240619
基金项目: 国家自然科学基金(62001246),江苏省重点研发计划项目(BE2023035),江苏省通信与网络技术工程研究中心开放课题
详细信息
    作者简介:

    陈鸣锴:男,副教授,研究方向为无线通信、信号处理、多媒体信息处理等

    孙振德:男,硕士生,研究方向为语义通信

    万雅芳:女,硕士生,研究方向为多媒体通信

    通讯作者:

    陈鸣锴 mkchen@njupt.edu.cn

  • 中图分类号: TN911

Resource Allocation for RIS-aided Cross-Model Communications

Funds: The National Natural Science Foundation of China (62001246), Key R and D Program of Jiangsu Province Key project and topics (BE2023035), Open Research Fundation of Jiangsu Engineering Research Center of Communication and Network Technology, NJUPT
  • 摘要: 针对视频和触觉业务共存的跨模态业务场景,该文构建了可重构智能表面(RIS)辅助的共存网络切片系统,用以提高视频业务和触觉业务的传输速率和可靠性。同时,为了有效降低触觉业务通过穿孔带给视频业务的资源损耗,提出了动态被动波束赋形方案,允许RIS在不同时隙进行动态调整。基于上述方案,该文在确保触觉业务传输的时延和可靠性满足约束的同时,构建最大化视频业务传输速率的优化问题,以满足跨模态业务共存需求,实现资源的合理分配。为求解此优化问题,该文将其建模为一个马尔可夫决策过程(MDP),通过深度确定性策略梯度(DDPG)算法来进行视频数据和触觉数据传输资源的联合优化。仿真结果显示,与现有方案相比,所提方案具有一定的优越性,在保证传输触觉业务可靠性的前提下,提高了约66.67%的视频业务和速率。
  • 图  1  基于穿孔方案的RIS辅助跨模态通信系统架构

    图  2  资源块的说明和提出的动态被动波束形成方案

    图  3  基于actor-critic的DDPG算法框架图

    图  4  不同方案下用户和速率随着基站功率的变化趋势

    图  5  不同方案下用户和速率随着RIS反射单元数量的变化趋势

    图  6  不同基站功率和RIS反射单元数量对触觉数据包平均时延的影响

    图  7  不同触觉数据包到达速率下用户和速率的变化情况

    图  8  不同功率下奖励随步长的变化

    图  9  不同学习率下平均奖励随步长的变化

    1  DDPG算法

     初始化:${s_1}$,${\theta _a}$,${\theta _c}$,${\theta '_a} \leftarrow {\theta _a}$和${\theta '_c} \leftarrow {\theta _c}$,经验回放池$\mathbb{N}$,随
     机噪声${\mathcal{N}_t}$
     while 迭代回合$ \le $最大迭代回合 do
      while $t \le T$ do
       • 根据状态${s_t}$和随机噪声${\mathcal{N}_t}$,通过actor网络计算动作
       ${a_t} = \mu ({s_t};{\theta _a}) + {{\rm N}_t}$
       • 执行动作${a_t}$,获得奖赏值$r({s_t},{a_t})$和下一状态${s_{t + 1}}$
       • 将经验$({s_t},{a_t},{r_t},{s_{t + 1}})$存储至经验回放池$\mathbb{N}$中
       • 从经验回放池$\mathbb{N}$中随机采样${N_{batch}}$个经验样本进行神经网
       络训练
       • 通过(26)的近似形式,计算得到当前训练critic网络的损失
       函数
       • 通过损失函数$L({\theta _c})$关于${\theta _c}$的梯度更新critic网络的参数
       • 通过(23)更新actor网络的参数${\theta _a}$
       • 使用公式(29)和(30)来更新目标actor网络和目标critic网络
       的参数${\theta '_a}$和${\theta '_c}$
       • $t \leftarrow t + 1$
      end while
     end while
    下载: 导出CSV

    表  1  仿真参数表

    参数意义设定数值
    资源块RB总数$K$200
    时隙个数$T$20
    一个时隙的持续时间1 ms
    一个微小时隙的持续时间$\Delta $0.125 ms
    一个时隙内微小时隙个数${\rm M}$8
    RB的频率带宽$B$180 kHz
    触觉数据包到达速率$\lambda $3
    触觉数据包的大小$D_l^{m,t}$20 Byte
    高斯随机噪声功率${\delta ^2}$-93 dBm
    触觉数据包的解码错误概率${\varepsilon _l}$${10^{ - 6}}$
    下载: 导出CSV
  • [1] 李玉宏, 张朋, 金帝, 等. 应用对未来网络的需求与挑战[J]. 电信科学, 2019, 35(8): 2019203. doi: 10.11959/j.issn.1000-0801.2019203.

    LI Yuhong, ZHANG Peng, JIN Di, et al. Application's needs and challenges for future networks[J]. Telecommunications Science, 2019, 35(8): 2019203. doi: 10.11959/j.issn.1000-0801.2019203.
    [2] WEI Xin, WU Dan, ZHOU Liang, et al. Cross-modal communication technology: A survey[J]. Fundamental Research, 2023. doi: 10.1016/j.fmre.2023.08.002.
    [3] WEI Xin, ZHANG Meng, and ZHOU Liang. Cross-modal transmission strategy[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(6): 3991–4003. doi: 10.1109/TCSVT.2021.3105130.
    [4] 陈鸣锴, 柳明浩, 王文俊, 等. 面向6G的跨模态语义编解码技术[J]. 信号处理, 2023, 39(7): 1141–1154. doi: 10.16798/j.issn.1003-0530.2023.07.001.

    CHEN Mingkai, LIU Minghao, WANG Wenjun, et al. Codec for cross-modal semantic communication in 6G[J]. Journal of Signal Processing, 2023, 39(7): 1141–1154. doi: 10.16798/j.issn.1003-0530.2023.07.001.
    [5] ALTAF KHATTAK S B, NASRALLA M M, and REHMAN I U. The role of 6G networks in enabling future smart health services and applications[C]. Proceedings of 2022 IEEE International Smart Cities Conference, Pafos, Cyprus, 2022: 1–7. doi: 10.1109/ISC255366.2022.9922093.
    [6] 李昂, 陈建新, 魏昕, 等. 面向6G的跨模态信号重建技术[J]. 通信学报, 2022, 43(6): 28–40. doi: 10.11959/j.issn.1000-436x.2022093.

    LI Ang, CHEN Jianxin, WEI Xin, et al. 6G-oriented cross-modal signal reconstruction technology[J]. Journal on Communications, 2022, 43(6): 28–40. doi: 10.11959/j.issn.1000-436x.2022093.
    [7] ZHOU Liang, WU Dan, CHEN Jianxin, et al. Cross-modal collaborative communications[J]. IEEE Wireless Communications, 2020, 27(2): 112–117. doi: 10.1109/MWC.001.1900201.
    [8] STEINBACH E, STRESE M, EID M, et al. Haptic codecs for the tactile internet[J]. Proceedings of the IEEE, 2019, 107(2): 447–470. doi: 10.1109/JPROC.2018.2867835.
    [9] ALSENWI M, TRAN N H, BENNIS M, et al. eMBB-URLLC resource slicing: A risk-sensitive approach[J]. IEEE Communications Letters, 2019, 23(4): 740–743. doi: 10.1109/LCOMM.2019.2900044.
    [10] SUN Haipeng, YANG Jin, SU Junhao, et al. Joint resource scheduling for coexistence of URLLC and eMBB in 5G wireless networks[C]. Proceedings of 2021 Computing, Communications and IoT Applications, Shenzhen, China, 2021: 53–58. doi: 10.1109/ComComAp53641.2021.9653121.
    [11] ZHAO Yunzhi, CHI Xuefen, QIAN Lei, et al. Resource allocation and slicing puncture in cellular networks with eMBB and URLLC terminals coexistence[J]. IEEE Internet of Things Journal, 2022, 9(19): 18431–18444. doi: 10.1109/JIOT.2022.3160647.
    [12] REN Rong, WANG Jie, YU Jingming, et al. Hybrid puncturing and superposition scheme for multiplexing uRLLC and eMBB services based on deep reinforcement learning[C]. Proceedings of the 2022 IEEE 8th International Conference on Computer and Communications, Chengdu, China, 2022: 806–810. doi: 10.1109/ICCC56324.2022.10065784.
    [13] GUO Jiangfeng, NIE Gaofeng, TIAN Hui, et al. Puncture-predictive fairness scheduling scheme for eMBB and URLLC based on TD3 algorithm[C]. Proceedings of 2023 IEEE/CIC International Conference on Communications in China, Dalian, China, 2023: 1–6. doi: 10.1109/ICCC57788.2023.10233289.
    [14] ZHUANSUN Chenlu, YAN Kedong, ZHANG Gongxuan, et al. Hypergraph-based joint channel and power resource allocation for cross-cell M2M communication in IIoT[J]. IEEE Internet of Things Journal, 2023, 10(17): 15350–15361. doi: 10.1109/JIOT.2023.3263567.
    [15] WANG Lei, YIN Anmin, JIANG Xue, et al. Resource allocation for multi-traffic in cross-modal communications[J]. IEEE Transactions on Network and Service Management, 2023, 20(1): 60–72. doi: 10.1109/TNSM.2022.3207776.
    [16] 文梦甜. 跨模态通信中传输策略优化研究[D]. [硕士论文], 南京邮电大学, 2023. doi: 10.27251/d.cnki.gnjdc.2023.001196.

    WEN Mengtian. Research on optimization of transmission strategy in cross-modal communications[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2023. doi: 10.27251/d.cnki.gnjdc.2023.001196.
    [17] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
    [18] LIASKOS C, NIE Shuai, TSIOLIARIDOU A, et al. A new wireless communication paradigm through software-controlled metasurfaces[J]. IEEE Communications Magazine, 2018, 56(9): 162–169. doi: 10.1109/MCOM.2018.1700659.
    [19] DI RENZO M, DEBBAH M, PHAN-HUY D T, et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019: 129. doi: 10.1186/s13638-019-1438-9.
    [20] GHANEM W R, JAMALI V, and SCHOBER R. Joint beamforming and phase shift optimization for multicell IRS-aided OFDMA-URLLC systems[C]. Proceedings of 2021 IEEE Wireless Communications and Networking Conference, Nanjing, China, 2021: 1–7. doi: 10.1109/WCNC49053.2021.9417582.
    [21] CAO Xuelin, YANG Bo, HUANG Chongwen, et al. Reconfigurable intelligent surface-assisted aerial-terrestrial communications via multi-task learning[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(10): 3035–3050. doi: 10.1109/JSAC.2021.3088634.
    [22] MELGAREJO D C, KALALAS C, DE SENA A S, et al. Reconfigurable intelligent surface-aided grant-free access for uplink URLLC[C]. Proceedings of the 2020 2nd 6G Wireless Summit, Levi, Finland, 2020: 1–5. doi: 10.1109/6GSUMMIT49458.2020.9083788.
    [23] ALMEKHLAFI M, ARFAOUI M A, ELHATTAB M, et al. Joint resource allocation and phase shift optimization for RIS-aided eMBB/URLLC traffic multiplexing[J]. IEEE Transactions on Communications, 2022, 70(2): 1304–1319. doi: 10.1109/TCOMM.2021.3127265.
    [24] ZHOU Shuangquan, ZHANG Wenbin, XU Fanglei, et al. Energy-efficient resource allocation in DDPG-based integrated satellite-terrestrial network[C]. Proceedings of 2023 IEEE Globecom Workshops, Kuala Lumpur, Malaysia, 2023: 147–152. doi: 10.1109/GCWkshps58843.2023.10464487.
    [25] SUTTON R S, MCALLESTER D, SINGH S, et al. Policy gradient methods for reinforcement learning with function approximation[C]. Proceedings of the 13th International Conference on Neural Information Processing Systems, Denver CO, USA, 1999: 1057–1063.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  7
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-17
  • 修回日期:  2025-02-12
  • 网络出版日期:  2025-02-21

目录

    /

    返回文章
    返回