高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LoRa网络中基于深度强化学习的信息年龄优化

程克非 陈彩蝶 罗佳 陈前斌

程克非, 陈彩蝶, 罗佳, 陈前斌. LoRa网络中基于深度强化学习的信息年龄优化[J]. 电子与信息学报. doi: 10.11999/JEIT240404
引用本文: 程克非, 陈彩蝶, 罗佳, 陈前斌. LoRa网络中基于深度强化学习的信息年龄优化[J]. 电子与信息学报. doi: 10.11999/JEIT240404
CHENG Kefei, CHEN Caidie, LUO Jia, CHEN Qianbin. Optimizing Age of Information in LoRa Networks via Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240404
Citation: CHENG Kefei, CHEN Caidie, LUO Jia, CHEN Qianbin. Optimizing Age of Information in LoRa Networks via Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240404

LoRa网络中基于深度强化学习的信息年龄优化

doi: 10.11999/JEIT240404
基金项目: 重庆市教委科学技术研究项目(KJQN202400643)
详细信息
    作者简介:

    程克非:男,博士生导师,研究方向为无线通信网络、云计算与大数据、嵌入式系统及应用、网络空间安全等

    陈彩蝶:女,硕士生,研究方向为LoRa物联网

    罗佳:男,讲师,博士,研究方向为下一代无线通信网络、人工智能、区块链等

    陈前斌:男,教授,博士生导师,研究方向为个人通信、多媒体信息处理与传输、异构蜂窝网络等

    通讯作者:

    罗佳 s220802003@stu.cqupt.edu.cn

  • 中图分类号: TN929.5

Optimizing Age of Information in LoRa Networks via Deep Reinforcement Learning

Funds: The Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202400643)
  • 摘要: 信息年龄(AoI)是信息新鲜度的衡量指标,针对时间敏感的物联网,最小化AoI显得尤为重要。该文基于LoRa网络的智能交通环境,分析Slot-Aloha协议下的AoI优化策略。该文建立了Slot-Aloha协议下数据包之间传输碰撞和等待时间的系统模型,并通过分析指出,在LoRa上行传输过程中,随着数据包数量增多,AoI主要受到数据包碰撞影响。为克服优化问题中动作空间过大导致难以实现有效求解的问题,该文采用连续动作空间映射离散动作空间的方式,使用柔性动作-评价 (SAC)算法对LoRa网络下的AoI进行优化。仿真结果显示,SAC算法优于传统算法与传统深度强化学习算法,可有效降低网络的平均AoI。
  • 图  1  系统模型

    图  2  基于时隙Aloha的数据包AoI变化情况

    图  3  数据包传输情况

    图  4  各终端数据包传输情况

    图  5  状态转移图

    图  6  不同算法的收敛曲线

    图  7  不同终端数量下的AoI

    图  8  TD3算法和SAC算法在不同时隙长度$ {T}_{\mathrm{s}\mathrm{l}} $下平均AoI变化

    表  1  空中传输时间

    SF789101112
    $ {T}^{\mathrm{a}} $ (ms)73.1128227.6409.6744.71365.3
    下载: 导出CSV

    表  2  实验参数值

    参数名
    信道数量($ c $)2
    终端数量($ N $)12
    SF数量6
    编码率($ \mathrm{C}\mathrm{R} $)4/5
    带宽($ \mathrm{B}\mathrm{W} $)125 kHz
    数据包大小($ {L}_{\mathrm{d}} $)50 byte
    step总数($ {T}_{\mathrm{s}\mathrm{t}} $)500
    时隙长度($ {T}_{\mathrm{s}\mathrm{l}} $)500 ms
    下载: 导出CSV
  • [1] KAUL S, YATES R, and GRUTESER M. Real-time status: How often should one update?[C]. IEEE INFOCOM, Orlando, USA, 2012: 2731–2735. doi: 10.1109/INFCOM.2012.6195689.
    [2] INOUE Y, MASUYAMA H, TAKINE T, et al. A general formula for the stationary distribution of the age of information and its application to single-server queues[J]. IEEE Transactions on Information Theory, 2019, 65(12): 8305–8324. doi: 10.1109/TIT.2019.2938171.
    [3] BEDEWY A M, SUN Yin, and SHROFF N B. Minimizing the age of information through queues[J]. IEEE Transactions on Information Theory, 2019, 65(8): 5215–5232. doi: 10.1109/TIT.2019.2912159.
    [4] HE Qing, YUAN Di, and EPHREMIDES A. Optimal link scheduling for age minimization in wireless systems[J]. IEEE Transactions on Information Theory, 2018, 64(7): 5381–5394. doi: 10.1109/TIT.2017.2746751.
    [5] KADOTA I, SINHA A, UYSAL-BIYIKOGLU E, et al. Scheduling policies for minimizing age of information in broadcast wireless networks[J]. IEEE/ACM Transactions on Networking, 2018, 26(6): 2637–2650. doi: 10.1109/TNET.2018.2873606.
    [6] WU Beining, CAI Zhengkun, WU Wei, et al. AoI-aware resource management for smart health via deep reinforcement learning[J]. IEEE Access, 2023, 11: 81180–81195. doi: 10.1109/ACCESS.2023.3299340.
    [7] PENG Kai, XIAO Peiyun, WANG Shangguang, et al. AoI-aware partial computation offloading in IIoT with edge computing: A deep reinforcement learning based approach[J]. IEEE Transactions on Cloud Computing, 2023, 11(4): 3766–3777. doi: 10.1109/TCC.2023.3328614.
    [8] WANG Hao, LIU Chi, YANG Haoming, et al. Ensuring threshold AoI for UAV-assisted mobile crowdsensing by multi-agent deep reinforcement learning with transformer[J]. IEEE/ACM Transactions on Networking, 2024, 32(1): 566–581. doi: 10.1109/TNET.2023.3289172.
    [9] WANG Zhuoyao, XU Xiaokang, and ZHAO Jin. Spreading factor allocation and rate adaption for minimizing age of information in LoRaWAN[C]. 2022 IEEE 24th International Conference on High Performance Computing & Communications; 8th International Conference on Data Science & Systems; 20th International Conference on Smart City; 8th International Conference on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), Hainan, China, 2022: 482–489. doi: 10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00092.
    [10] CUOMO F, CAMPO M, CAPONI A, et al. EXPLoRa: Extending the performance of LoRa by suitable spreading factor allocations[C]. Proceedings of the 13th International Conference on Wireless and Mobile Computing, Networking and Communications, Rome, Italy, 2017: 1–8. doi: 10.1109/WiMOB.2017.8115779.
    [11] GEORGIOU O and RAZA U. Low power wide area network analysis: Can LoRa scale?[J]. IEEE Wireless Communications Letters, 2017, 6(2): 162–165. doi: 10.1109/LWC.2016.2647247.
    [12] HAMDI R, QARAQE M, and ALTHUNIBAT S. Dynamic spreading factor assignment in LoRa wireless networks[C]. 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–5. doi: 10.1109/ICC40277.2020.9149243.
    [13] FARHAD A, KIM D H, STHAPIT P, et al. Interference-aware spreading factor assignment scheme for the massive LoRaWAN network[C]. International Conference on Electronics, Information, and Communications, Auckland, New Zealand, 2019: 1–2. doi: 10.23919/ELINFOCOM.2019.8706416.
    [14] FARHAD A, KIM D H, and PYUN J Y. Resource allocation to massive internet of things in LoRaWANs[J]. Sensors, 2020, 20(9): 2645. doi: 10.3390/s20092645.
    [15] BELTRAMELLI L, MAHMOOD A, ÖSTERBERG P, et al. LoRa beyond aloha: An investigation of alternative random access protocols[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3544–3554. doi: 10.1109/TII.2020.2977046.
    [16] WANG Jiwen, YU Jihong, CHEN Xiaoming, et al. Age of information for frame slotted aloha[J]. IEEE Transactions on Communications, 2023, 71(4): 2121–2135. doi: 10.1109/TCOMM.2023.3244214.
    [17] CHEIKH I, SABIR E, AOUAMI R, et al. Throughput-delay tradeoffs for slotted-aloha-based LoRaWAN networks[C]. International Conference on Wireless Communications and Mobile Computing, Harbin City, China, 2021: 2020–2025. doi: 10.1109/IWCMC51323.2021.9498969.
    [18] HAMDI R, BACCOUR E, ERBAD A, et al. LoRa-RL: Deep reinforcement learning for resource management in hybrid energy LoRa wireless networks[J]. IEEE Internet of Things Journal, 2022, 9(9): 6458–6476. doi: 10.1109/JIOT.2021.3110996.
    [19] HONG Shengguang, YAO Fang, ZHANG Fengyun, et al. Reinforcement learning approach for SF allocation in LoRa network[J]. IEEE Internet of Things Journal, 2023, 10(20): 18259–18272. doi: 10.1109/JIOT.2023.3279429.
    [20] WARET A, KANEKO M, GUITTON A, et al. LoRa throughput analysis with imperfect spreading factor orthogonality[J]. IEEE Wireless Communications Letters, 2019, 8(2): 408–411. doi: 10.1109/LWC.2018.2873705.
    [21] HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[C]. Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 1856–1865.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  17
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-04
  • 修回日期:  2025-01-08
  • 网络出版日期:  2025-01-25

目录

    /

    返回文章
    返回