高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于Transformer特征金字塔的自蒸馏目标分割方法

陈雷 杨吉斌 曹铁勇 郑云飞 王杨 张波 林振华 李文斌

陈雷, 杨吉斌, 曹铁勇, 郑云飞, 王杨, 张波, 林振华, 李文斌. 一种基于Transformer特征金字塔的自蒸馏目标分割方法[J]. 电子与信息学报. doi: 10.11999/JEIT240735
引用本文: 陈雷, 杨吉斌, 曹铁勇, 郑云飞, 王杨, 张波, 林振华, 李文斌. 一种基于Transformer特征金字塔的自蒸馏目标分割方法[J]. 电子与信息学报. doi: 10.11999/JEIT240735
CHEN Lei, YANG Jibin, CAO Tieyong, ZHENG Yunfei, WANG Yang, ZHANG Bo, LIN Zhenhua, LI Wenbin. A Self-distillation Object Segmentation Method Based on Transformer Feature Pyramid[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240735
Citation: CHEN Lei, YANG Jibin, CAO Tieyong, ZHENG Yunfei, WANG Yang, ZHANG Bo, LIN Zhenhua, LI Wenbin. A Self-distillation Object Segmentation Method Based on Transformer Feature Pyramid[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240735

一种基于Transformer特征金字塔的自蒸馏目标分割方法

doi: 10.11999/JEIT240735
基金项目: 国家自然科学基金(61801512, 62071484),江苏省青年基金(BK20180080),陆军工程大学基础前沿项目(KYZYJKQTZQ23001),国防科技大学2021年校立科研项目(ZK21-43)
详细信息
    作者简介:

    陈雷:男,博士,助理研究员,研究方向为深度学习、计算机视觉

    杨吉斌:男,博士,副教授,研究方向为深度学习、信号处理

    曹铁勇:男,博士,教授,研究方向为深度学习、信号处理

    郑云飞:男,博士,讲师,研究方向为深度学习、信号处理

    王杨:男,博士,研究方向为深度学习、计算机视觉

    张波:男,博士,讲师,研究方向为深度学习、信号处理

    林振华:男,本科,副研究员,研究方向为信息系统工程

    李文斌:男,本科,研究方向为指挥控制

    通讯作者:

    杨吉斌 yjbice@sina.com

  • 中图分类号: TN919.8; TP391.4

A Self-distillation Object Segmentation Method Based on Transformer Feature Pyramid

Funds: The National Natural Science Foundation of China (61801512, 62071484), The Natural Science Foundation of Jiangsu Province (BK20180080), The Army Engineering University of PLA Basic Frontier Project (KYZYJKQTZQ23001), The University of National Defense Science and Technology 2021 School Scientific Research Project (ZK21-43)
  • 摘要: 为在不增加网络参数规模的情况下提升目标分割性能,该文提出一种基于Transformer特征金字塔的自蒸馏目标分割方法,提升了Transformer分割模型的实用性。首先,以Swin Transformer为主干网构建了像素级的目标分割模型;然后,设计了适合Transformer的蒸馏辅助分支,该分支由密集连接空间空洞金字塔(DenseASPP)、相邻特征融合模块(AFFM)和得分模块构建而成,通过自蒸馏方式指导主干网络学习蒸馏知识;最后,利用自上而下的学习策略指导模型学习,以保证自蒸馏学习的一致性。实验表明,在4个公开数据集上所提方法均能有效提升目标分割精度,在伪装目标检测(COD)数据集上比次优的Transformer知识蒸馏(TKD)方法Fβ值提高了约1.6%。
  • 图  1  基于Transformer的自蒸馏目标分割模型示意图

    图  2  DenseASPP结构示意图

    图  3  AFFM结构示意图

    图  4  得分模块结构示意图

    图  5  学习策略示意图

    图  6  不同目标分割算法效果图

    表  1  不同分割方法的分割结果(%)

    方法CODDUT-0THURSOC平均值
    FβmIoUFβmIoUFβmIoUFβmIoUFβmIoU
    EMANet63.0726.4278.3859.8682.6062.7086.8371.6374.0251.61
    CCNet64.4441.2779.7063.1584.8070.1087.2777.7974.9056.91
    GateNet65.8146.1182.2270.0487.5978.6088.2079.7178.4064.33
    CPD60.4242.9483.3872.3387.9079.3883.5971.4276.5362.46
    DSR54.6836.2580.6366.8384.0472.2582.4473.0469.6955.24
    EDN65.2746.0484.2375.3888.7183.3174.8963.9478.7168.40
    POOL+61.5545.3982.9570.8485.2574.7487.9279.3979.4267.59
    TAT67.9547.0584.2871.6588.6578.3489.4580.3682.5869.35
    TKD68.4646.8383.9671.2788.8678.3589.3580.0682.6669.13
    所提方法70.0347.8685.3471.8789.5479.7889.6481.3483.6470.21
    下载: 导出CSV

    表  2  不同自蒸馏方法的分割结果(%)

    方法CODDUT-0THURSOC平均值
    FβmIoUFβmIoUFβmIoUFβmIoUFβmIoU
    BL67.3446.0983.0368.2588.2477.5488.0379.3481.6667.81
    BL+DKS68.4547.2684.7870.3788.6278.5289.2680.5482.7869.17
    BL+BYOT68.3846.3285.0370.3488.5777.8388.3680.3782.5868.72
    BL+DHM67.5245.6784.2369.5389.3276.9788.7581.1382.4568.33
    BL+SA69.2146.2384.1669.3089.2478.2488.6980.2482.8368.50
    所提方法70.0347.8685.3471.8789.5479.7889.6481.3483.6470.21
    下载: 导出CSV

    表  3  不同目标分割方法效率

    EMANetCCNetGateNetCPDDSRPOOL+TAT所提方法
    参数(MB)34.8052.10128.6347.8575.2970.50140.21132.25
    速度(FPS)37.5935.3433.0332.608.8021.5318.5436.15
    下载: 导出CSV

    表  4  消融实验结果

    序号 自蒸馏模块 学习策略 结果(%)
    DenseASPP AFFM 自上而下 Fβ mIoU
    1 × × × 67.34 46.09
    2 × × 67.53 46.28
    3 × 69.03 47.11
    4 × 68.34 46.84
    5 × 69.23 46.96
    6 70.03 47.86
    下载: 导出CSV
  • [1] 吕岳, 周浙泉, 吕淑静. 基于双层解耦策略和注意力机制的遮挡目标分割[J]. 电子与信息学报, 2023, 45(1): 335–343. doi: 10.11999/JEIT211288.

    LÜ Yue, ZHOU Zhequan and LÜ Shujing. Occluded object segmentation based on bilayer decoupling strategy and attention mechanism[J]. Journal of Electronics & Information Technology, 2023, 45(1): 335–343. doi: 10.11999/JEIT211288.
    [2] ZHENG Yunfei, ZHANG Xiongwei, WANG Feng, et al. Detection of people with camouflage pattern via dense deconvolution network[J]. IEEE Signal Processing Letters, 2019, 26(1): 29–33. doi: 10.1109/LSP.2018.2825959.
    [3] 任莎莎, 刘琼. 小目标特征增强图像分割算法[J]. 电子学报, 2022, 50(8): 1894–1904. doi: 10.12263/DZXB.20211123.

    REN Shasha and LIU Qiong. A tiny target feature enhancement algorithm for semantic segmentation[J]. Acta Electronica Sinica, 2022, 50(8): 1894–1904. doi: 10.12263/DZXB.20211123.
    [4] 梁新宇, 权冀川, 杨辉, 等. 多尺度特征提取和多层次注意力机制的迷彩伪装目标分割算法[J]. 计算机辅助设计与图形学学报, 2022, 34(5): 683–692. doi: 10.3724/SP.J.1089.2022.19000.

    LIANG Xinyu, QUAN Jichuan, YANG Hui, et al. Camouflage target segmentation algorithm using multi-scale feature extraction and multi-level attention mechanism[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(5): 683–692. doi: 10.3724/SP.J.1089.2022.19000.
    [5] LI Xiangtai, DING Henghui, YUAN Haobo, et al. Transformer-based visual segmentation: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 10138–10163. doi: 10.1109/TPAMI.2024.3434373.
    [6] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. Proceedings of 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9992–10002. doi: 10.1109/ICCV48922.2021.00986.
    [7] CHEN Lei, CAO Tieyong, ZHENG Yunfei, et al. A self‐distillation object segmentation method via frequency domain knowledge augmentation[J]. IET Computer Vision, 2023, 17(3): 341–351. doi: 10.1049/cvi2.12170.
    [8] 邵仁荣, 刘宇昂, 张伟, 等. 深度学习中知识蒸馏研究综述[J]. 计算机学报, 2022, 45(8): 1638–1673. doi: 10.11897/SP.J.1016.2022.01638.

    SHAO Renrong, LIU Yuang, ZHANG Wei, et al. A survey of knowledge distillation in deep learning[J]. Chinese Journal of Computer, 2022, 45(8): 1638–1673. doi: 10.11897/SP.J.1016.2022.01638.
    [9] WU Di, CHEN Pengfei, YU Xuehui, et al. Spatial self-distillation for object detection with inaccurate bounding boxes[C]. Proceedings of 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 6832–6842. doi: 10.1109/ICCV51070.2023.00631.
    [10] LIN Sihao, XIE Hongwei, WANG Bing, et al. Knowledge distillation via the target-aware transformer[C]. Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 10905–10914. doi: 10.1109/CVPR52688.2022.01064.
    [11] LIU Ruiping, YANG Kailun, ROITBERG A, et al. TransKD: Transformer knowledge distillation for efficient semantic segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(12): 20933–20949. doi: 10.1109/TITS.2024.3455416.
    [12] YANG Maoke, YU Kun, ZHANG Chi, et al. DenseASPP for semantic segmentation in street scenes[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3684–3692. doi: 10.1109/CVPR.2018.00388.
    [13] ZHENG Yunfei, SUN Meng, WANG Xiaobing, et al. Self-distillation object segmentation via pyramid knowledge representation and transfer[J]. Multimedia Systems, 2023, 29(5): 2615–2631. doi: 10.1007/s00530-023-01121-x.
    [14] ZHANG Linfeng, SONG Jiebo, GAO Anni, et al. Be your own teacher: Improve the performance of convolutional neural networks via self‐distillation[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 3712–3721. doi: 10.1109/ICCV.2019.00381.
    [15] CHENG Mingming, MITRA N J, HUANG Xiaolei, et al. SalientShape: Group saliency in image collections[J]. The Visual Computer, 2014, 30(4): 443–453. doi: 10.1007/s00371-013-0867-4.
    [16] ZHAI Qiang, LI Xin, YANG Fan, et al. Mutual graph learning for camouflaged object detection[C]. Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA 2021: 12992–13002. doi: 10.1109/CVPR46437.2021.01280.
    [17] WANG Yangtao, SHEN Xi, YUAN Yuan, et al. TokenCut: Segmenting objects in images and videos with self-supervised transformer and normalized cut[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(12): 15790–15801. doi: 10.1109/TPAMI.2023.3305122.
    [18] KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]. Proceedings of 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2023: 3992–4003. doi: 10.1109/ICCV51070.2023.00371.
    [19] JI Wei, LI Jingjing, BI Qi, et al. Segment anything is not always perfect: An investigation of SAM on different real-world applications[J]. Machine Intelligence Research, 2024, 21(4): 617–630. doi: 10.1007/s11633-023-1385-0.
    [20] YANG Chuanguang, AN Zhulin, ZHOU Helong, et al. Online knowledge distillation via mutual contrastive learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 10212–10227. doi: 10.1109/TPAMI.2023.3257878.
    [21] CHEN Lei, CAO Tieyong, ZHENG Yunfei, et al. A non-negative feedback self-distillation method for salient object detection[J]. PeerJ Computer Science, 2023, 9: e1435. doi: 10.7717/peerj-cs.1435.
    [22] FAN Dengping, JI Gepeng, SUN Guolei, et al. Camouflaged object detection[C]. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 2774–2784. doi: 10.1109/CVPR42600.2020.00285.
    [23] YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph based manifold ranking[C]. Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 3166–3173. doi: 10.1109/CVPR.2013.407.
    [24] FAN Dengping, CHENG Mingming, LIU Jiangjiang, et al. Salient objects in clutter: Bringing salient object detection to the foreground[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018: 186–202. doi: 10.1007/978-3-030-01267-0_12.
    [25] LI Xia, ZHONG Zhisheng, WU Jianlong, et al. Expectation‐maximization attention networks for semantic segmentation[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9166–9175. doi: 10.1109/ICCV.2019.00926.
    [26] HUANG Zilong, WANG Xinggang, HUANG Lichao, et al. CCNeT: Criss-cross attention for semantic segmentation[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 603–612. doi: 10.1109/ICCV.2019.00069.
    [27] ZHAO Xiaoqi, PANG Youwei, ZHANG Lihe, et al. Suppress and balance: A simple gated network for salient object detection[C]. Proceedings of the 16th European Conference on Computer Vision, Glasgow, UK, 2020: 35–51. doi: 10.1007/978-3-030-58536-5_3.
    [28] WU Zhe, SU Li and HUANG Qingming. Cascaded partial decoder for fast and accurate salient object detection[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3902–3911. doi: 10.1109/CVPR.2019.00403.
    [29] WANG Liansheng, CHEN Rongzhen, ZHU Lei, et al. Deep sub-region network for salient object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(2): 728–741. doi: 10.1109/TCSVT.2020.2988768.
    [30] WU Yuhuan, LIU Yun, ZHANG Le, et al. EDN: Salient object detection via extremely-downsampled network[J]. IEEE Transactions on Image Processing, 2022, 31: 3125–3136. doi: 10.1109/TIP.2022.3164550.
    [31] LIU Jiangjiang, HOU Qibin, LIU Zhiang, et al. PoolNet+: Exploring the potential of pooling for salient object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 887–904. doi: 10.1109/TPAMI.2021.3140168.
    [32] HOU Yuenan, MA Zheng, LIU Chunxiao, et al. Learning lightweight lane detection CNNs by self‐attention distillation[C]. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 1013–1021. doi: 10.1109/ICCV.2019.00110.
    [33] SUN Dawei, YAO Anbang, ZHOU Aojun, et al. Deeply‐supervised knowledge synergy[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6990–6999. doi: 10.1109/CVPR.2019.00716.
    [34] LI Duo and CHEN Qifeng. Dynamic hierarchical mimicking towards consistent optimization objectives[C]. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 7639–7648. doi: 10.1109/CVPR42600.2020.00766.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-26
  • 修回日期:  2024-12-16
  • 网络出版日期:  2024-12-20

目录

    /

    返回文章
    返回