Throughput Maximization for Double RIS-Assisted MISO Systems
-
摘要: 近年来,有源可重构智能表面(ARIS)技术获得了学术界的广泛关注。然而,ARIS在多RIS辅助无线通信系统中的应用还缺乏相关研究。针对此问题,该文提出基于双RIS辅助的无线通信系统模型。模型假设基站(BS)和用户之间的直连链路受阻,仅通过RIS形成的反射链路进行通信。在此基础上,根据ARIS与被动RIS(PRIS)的不同组合情况,提出4种RIS组合模型。模型的目标是优化基站波束赋形、RIS的相移矩阵和功率分配因子,以最大化系统通信容量。由于该优化问题为非凸问题,该文采用了交替优化算法(AO)与连续凸逼近(SCA)对问题进行处理。仿真结果表明,无论基站发射功率高或低,TAAR组合模型的性能均显著优于传统单ARIS配置。Abstract: In recent years, Active Reconfigurable Intelligent Surface (ARIS) technology has received extensive attention from academia. However, there is still a lack of research on the application of ARIS in multi-RIS assisted wireless communication systems. A dual RIS assisted wireless communication system is proposed in this paper The model assumes that the direct link between the Base Station (BS) and the user is blocked and only communicates through the reflection link formed by the RIS. On this basis, according to the different combinations of ARIS and Passive RIS (PRIS), four RIS combination models are proposed. The model aims to maximize the communication capacity of system by optimizing the BS beamforming, RIS phase matrix and power allocation factor. To tackle this non-convex optimization problem, the paper proposes an Alternating Optimization (AO) algorithm and employs Successive Convex Approximation (SCA). Simulation results illustrated that under the condition of total power constraints, the performance of the Transmitter-ARIS ARIS-Receive combination model significantly superior to the traditional signal ARIS model, regardless of whether the transmit power of the BS is high or low.
-
1 基于AO算法的信道对齐流程
(1) 初始化参数${{\theta}} _1^{(0)}$, ${{\theta}} _2^{(0)}$, ${{\mathbf{\omega }}^{(0)}}$迭代数$n = 0$,收敛门限$\varepsilon $ (2) 利用初始参数计算$ \gamma _{{\text{TPPR}}}^n $的值 (3) 迭代开始: (4) 固定${{\theta} _2}$, ${\mathbf{\omega }}$,求解式(15)得到${{\theta} _1}$ (5) 固定${{\theta} _1}$, ${\mathbf{\omega }}$,求解式(16)得到${{\theta} _2}$ (6) 固定${{\theta} _1}$,${{\theta} _2}$,求解式(17)得到${\mathbf{\omega }}$ (7) 使用${{\theta} _1}$,${{\theta} _2}$, ${\mathbf{\omega }}$,计算$\gamma _{{\text{TPPR}}}^{n + 1}$的值 (8) 判断$\left| {\gamma _{{\text{TPPR}}}^{n + 1} - \gamma _{{\text{TPPR}}}^n} \right| \le \varepsilon $或$n \ge 100$是否成立,若不满
足条件,$n = n + 1$返回步骤4(9) 结束循环 (10) 得到最优解${{\theta} _1}$, ${{\theta} _2}$, ${\mathbf{\omega }}$ 2 基于SCA的AO算法流程
(1) 初始化参数${\theta} _1^{(0)}$, ${\theta} _2^{(0)}$, ${{\mathbf{\omega }}^{(0)}}$, ${\tau _0}$, ${\kappa _0}$,迭代数$n = 0$,收敛
门限$\varepsilon $(2) 计算$\gamma _{{\text{TAPR}}}^n$的值 (3) 迭代开始: (4) 固定${{\theta} _2}$, ${\mathbf{\omega }}$,求解问题(P2.1),将解进行高斯随机化后得到
${\theta} _1^{n + 1}$(5) 固定${{\theta} _1}$, ${\mathbf{\omega }}$,求解问题(P2.2),将解进行高斯随机化后得到
${\theta} _2^{n + 1}$(6) 固定${{\theta} _1}$, ${{\theta} _2}$,求解问题(P2.3)得到${{\mathbf{\omega }}^{n + 1}}$ (7) 使用${\theta} _1^{n + 1}$, ${\theta} _2^{n + 1}$,${{\mathbf{\omega }}^{n + 1}}$,计算$\gamma _{{\text{TAPR}}}^{n + 1}$的值 (8) 判断收敛条件$\left| {\gamma _{{\text{TAPR}}}^{n + 1} - \gamma _{{\text{TAPR}}}^n} \right| \le \varepsilon $或$n \ge 100$是否成
立,若满足条件,迭代结束,否则,$n = n + 1$返回步
骤4(9) 得到最优解${{\theta} _1}$, ${{\theta} _2}$, ${\mathbf{\omega }}$ -
[1] SIDDIQI M Z and MIR T. Reconfigurable intelligent surface-aided wireless communications: An overview[J]. Intelligent and Converged Networks, 2022, 3(1): 33–63. doi: 10.23919/ICN.2022.0007. [2] 张力康, 杜清河, 卢忱, 等. 面向6G的RIS辅助通信系统的信道估计技术[J]. 移动通信, 2024, 48(6): 75–80. doi: 10.3969/j.issn.1006-1010.20240425-0002.ZHANG Likang, DU Qinghe, LU Chen, et al. Overview of channel estimation for reconfigurable intelligent surface-assisted communications towards 6G system[J]. Mobile Communications, 2024, 48(6): 75–80. doi: 10.3969/j.issn.1006-1010.20240425-0002. [3] JIANG Hao, ZHANG Zaichen, XIONG Baiping, et al. A 3D stochastic channel model for 6G wireless double-IRS cooperatively assisted MIMO communications[C]. Proceedings of 2021 13th International Conference on Wireless Communications and Signal Processing, Changsha, China, 2021. doi: 10.1109/WCSP52459.2021.9613605. [4] GORTY V K. Channel estimation for double IRS assisted broadband single-user SISO communication[C]. Proceedings of 2022 IEEE International Conference on Signal Processing and Communications, Bangalore, India, 2022: 1–5. doi: 10.1109/SPCOM55316.2022.9840513. [5] ZHENG Beixiong, YOU Changsheng, and ZHANG Rui. Efficient channel estimation for double-IRS aided multi-user MIMO system[J]. IEEE Transactions on Communications, 2021, 69(6): 3818–3832. doi: 10.1109/TCOMM.2021.3064947. [6] BAZZI S and XU Wen. IRS parameter optimization for channel estimation MSE minimization in double-IRS aided systems[J]. IEEE Wireless Communications Letters, 2022, 11(10): 2170–2174. doi: 10.1109/LWC.2022.3196126. [7] YOU Changsheng, ZHENG Beixiong, and ZHANG Rui. Wireless communication via double IRS: Channel estimation and passive beamforming designs[J]. IEEE Wireless Communications Letters, 2021, 10(2): 431–435. doi: 10.1109/LWC.2020.3034388. [8] HAN Yitao, ZHANG Shuowen, DUAN Lingjie, et al. Cooperative double-IRS aided communication: Beamforming design and power scaling[J]. IEEE Wireless Communications Letters, 2020, 9(8): 1206–1210. doi: 10.1109/LWC.2020.2986290. [9] WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025. [10] HAN Yitao, ZHANG Shuowen, DUAN Lingjie, et al. Double-IRS aided MIMO communication under LoS channels: Capacity maximization and scaling[J]. IEEE Transactions on Communications, 2022, 70(4): 2820–2837. doi: 10.1109/TCOMM.2022.3151893. [11] ZHENG Beixiong, YOU Changsheng, and ZHANG Rui. Double-IRS assisted multi-user MIMO: Cooperative passive beamforming design[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4513–4526. doi: 10.1109/TWC.2021.3059945. [12] DING Gengfa, YANG Feng, DING Lianghui, et al. Analysis and optimization of a double-IRS cooperatively assisted system with a quasi-static phase shift design[J]. IEEE Transactions on Wireless Communications, 2023, 22(7): 4416–4433. doi: 10.1109/TWC.2022.3225474. [13] KUMAR C and KASHYAP S. On the power transfer efficiency and feasibility of wireless energy transfer using double IRS[J]. IEEE Transactions on Vehicular Technology, 2023, 72(5): 6165–6180. doi: 10.1109/TVT.2022.3231636. [14] FU Min and ZHANG Rui. Active and passive IRS jointly aided communication: Deployment design and achievable rate[J]. IEEE Wireless Communications Letters, 2023, 12(2): 302–306. doi: 10.1109/LWC.2022.3224457. [15] LI Xinhao, YOU Changsheng, KANG Zhenyu, et al. Double-active-IRS aided wireless communication with total amplification power constraint[J]. IEEE Communications Letters, 2023, 27(10): 2817–2821. doi: 10.1109/LCOMM.2023.3298070. [16] KANG Zhenyu, YOU Changsheng and ZHANG Rui. Double-active-IRS aided wireless communication: Deployment optimization and capacity scaling[J]. IEEE Wireless Communications Letters, 2023, 12(11): 1821–1825. doi: 10.1109/LWC.2023.3294258. [17] NGUYEN T A, NGUYEN H V, DO D T, et al. Performance analysis of downlink double-IRS systems relying on non-orthogonal multiple access[J]. IEEE Access, 2023, 11: 110208–110220. doi: 10.1109/ACCESS.2023.3322373. [18] HU Xiaoling, ZHONG Caijun, ZHANG Yu, et al. Location information aided multiple intelligent reflecting surface systems[J]. IEEE Transactions on Communications, 2020, 68(12): 7948–7962. doi: 10.1109/TCOMM.2020.3020577. [19] TEJAS K S, UDAYKUMAR M, VARUN R, et al. Intelligent reflecting surface assisted wireless communication for coverage enhancement[C]. Proceedings of 2023 International Conference on Smart Systems for applications in Electrical Sciences, Tumakuru, India, 2023. doi: 10.1109/ICSSES58299.2023.10200009. [20] 王丹, 陈小梦, 王勇芳. 可重构智能表面辅助无线通信的用户分配[J]. 电子与信息学报, 2022, 44(7): 2425–2430. doi: 10.11999/JEIT211473.WANG Dan, CHEN Xiaomeng, and WANG Yongfang. User assignment for wireless communication assisted by reconfigurable intelligent surfaces[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2425–2430. doi: 10.11999/JEIT211473. [21] 王华华, 孙宸, 朱鹏云. 可重构智能表面辅助双功能雷达通信系统的联合波束优化[J]. 电子与信息学报, 2024, 46(1): 222–228. doi: 10.11999/JEIT221537.WANG Huahua, SUN Chen, and ZHU Pengyun. Joint beamforming optimization for RIS-assisted dual-functional radar-communication systems[J]. Journal of Electronics & Information Technology, 2024, 46(1): 222–228. doi: 10.11999/JEIT221537.