高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向超表面天线设计的95~105 GHz SiGe BiCMOS宽带数控衰减器

罗将 张文柱 程强

罗将, 张文柱, 程强. 面向超表面天线设计的95~105 GHz SiGe BiCMOS宽带数控衰减器[J]. 电子与信息学报. doi: 10.11999/JEIT240059
引用本文: 罗将, 张文柱, 程强. 面向超表面天线设计的95~105 GHz SiGe BiCMOS宽带数控衰减器[J]. 电子与信息学报. doi: 10.11999/JEIT240059
LUO Jiang, ZHANG Wenzhu, CHENG Qiang. 95~105 GHz SiGe BiCMOS Wideband Digitally Controlled Attenuator for Metasurface Antenna Design[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240059
Citation: LUO Jiang, ZHANG Wenzhu, CHENG Qiang. 95~105 GHz SiGe BiCMOS Wideband Digitally Controlled Attenuator for Metasurface Antenna Design[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240059

面向超表面天线设计的95~105 GHz SiGe BiCMOS宽带数控衰减器

doi: 10.11999/JEIT240059
基金项目: 国家重点研发计划(2023YFB3811503),浙江省自然科学基金(LQ23F040009),毫米波国家重点实验室 (K202316)
详细信息
    作者简介:

    罗将:男,副教授,研究方向为智能超表面调控器件与芯片、毫米波单片集成电路与系统

    张文柱:男,硕士生,研究方向为硅基毫米波幅度控制电路设计

    程强:男,教 授,研究方向为人工电磁材料、天线、微波毫米波成像、射频电路、雷达系统

    通讯作者:

    罗将 luojiang@hdu.edu.cn

  • 中图分类号: TN433

95~105 GHz SiGe BiCMOS Wideband Digitally Controlled Attenuator for Metasurface Antenna Design

Funds: The National Key Research and Development Program of China (2023YFB3811503), The Zhejiang Provincial Natural Science Foundation of China (LQ23F040009), The State Key Laboratory of Millimeter Waves (K202316)
  • 摘要: 近年来,因对电磁波具备灵活的调控能力,超表面天线技术受到来自通信、雷达以及天线领域学者的广泛关注。其中,超表面天线单元中所使用的有源调控器件,是决定整个系统性能的最关键部件之一。基于0.13 μm SiGe BiCMOS工艺设计了一个95~105 GHz的五位宽带数控衰减器芯片。该衰减器采用了反射式和简化T型两种拓扑结构,其中4 dB与8 dB反射式衰减单元采用交叉耦合宽带耦合器代替传统的3 dB耦合器或定向耦合器,同时获得了高衰减精度和低插入损耗;而0.5 dB, 1 dB, 2 dB三个衰减单元均采用简化T型结构。此外,利用RC正斜率和负斜率校正网络分别应用于不同的衰减单元进行相位补偿,极大地改善了衰减器的附加相移。经过仿真验证,在95~105 GHz的感兴趣工作频率内,衰减器芯片在0.12 mm2的紧凑的尺寸下实现了0~15.5 dB的衰减范围,步进为0.5 dB,基态插入损耗小于2.5 dB,幅度均方根误差小于0.31 dB,附加相移均方根误差小于2.2º。所提出的W波段衰减器可作为一个关键部件赋能集成T/R的辐散一体化超表面天线系统的硬件实现。
  • 图  1  反射式衰减单元的拓扑结构图

    图  2  衰减量与归一化负载阻抗的关系

    图  3  所提出的耦合器的3维物理模型

    图  4  耦合器在端口匹配时与传统传输线的插入损耗仿真结果

    图  5  等效电路模型

    图  6  等效电路模型和3维物理模型仿真结果对比

    图  7  相位补偿结构

    图  8  不同相位补偿结构下阻抗的相位和模值随频率变化的响应曲线

    图  9  W波段5位数控衰减器原理图

    图  10  W波段5位数控衰减器版图

    图  11  全态衰减曲线

    图  12  所有衰减态下相位变化曲线

    图  13  插入损耗变化曲线

    图  14  RMSA与RMSP曲线

    表  1  等效电路模型元器件的参数值

    器件 参数值 器件 参数值
    L1 85.3 pH C1 0.5 fF
    L2 22.0 pH C2 2.7 fF
    L3
    R1
    k
    13.0 pH
    1.9 ohm
    0.7
    C3
    C4
    12.8 fF
    0.7 fF
    下载: 导出CSV

    表  2  关键器件参数

    器件参数值器件参数值器件参数值器件参数值
    T1,2(W/L)120 nm/630 nmC1,2,420 fFR41298 ohmR981 ohm
    T3(W/L)120 nm/1050 nmC312 fFR557 ohmR10223 ohm
    T4(W/L)120 nm/850 nmR1126 ohmR62273 ohm
    T5(W/L)120 nm/900 nmR2301 ohmR7190 ohm
    T6,7(W/L)120 nm/1200 nmR31433 ohmR8100 ohm
    W:发射极宽度 L:发射极长度
    下载: 导出CSV

    表  3  性能总结和已报道的硅基毫米波衰减器芯片对比

    文献 2014[6] 2016[18] 2021[19] 2022[22] #本文
    工艺 65 nm
    CMOS
    180 nm
    SiGe BiCMOS
    65 nm
    CMOS
    130 nm
    SiGe BiCMOS
    130 nm
    SiGe BiCMOS
    频率(GHz) 50~110 57-64 80~110 190~220 95~105
    拓扑结构 Distributed Distributed Coupled Coupled lines Reflected+T type
    位数(bit)/步进(dB) 14/0.75 4/1.0 6/NA 4/0.35 5/0.50
    衰减范围(dB) 0~10.0 0~11.8 0~14.5 0~4.7 0~15.5
    插入损耗(dB) 11.2 11.0 4.5* 2.0 2.5
    幅度均方根误差(RMSA)(dB) NA <1.54 <0.31 <0.34 <0.31
    相位变化(º) <5.0 12.0* <12.0 NA <4.8
    相位均方根误差(RMSP)(º) <1.4 <3.6 NA NA <2.2
    面积(mm2) 0.38 0.94 0.06 0.03 0.12
    *:估算 #:仿真结果
    下载: 导出CSV
  • [1] CUI Tiejun, LIU Shuo, and ZHANG Lei. Information metamaterials and metasurfaces[J]. Journal of Materials Chemistry C, 2017, 5(15): 3644–3668. doi: 10.1039/C7TC00548B.
    [2] CHENG Qiang, ZHANG Lei, DAI Junyan, et al. Reconfigurable intelligent surfaces: Simplified-architecture transmitters—from theory to implementations[J]. Proceedings of the IEEE, 2022, 110(9): 1266–1289. doi: 10.1109/JPROC.2022.3170498.
    [3] ZHAO Chenxi, GUO Jiawei, LIU Huihua, et al. A 33–41-GHz SiGe-BiCMOS digital step attenuator with minimized unit impedance variation[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2021, 29(3): 568–579. doi: 10.1109/TVLSI.2020.3046016.
    [4] CHEON C D, RAO S G, LIM W, et al. Design methodology for a wideband, low insertion loss, digital step attenuator in SiGe BiCMOS technology[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3): 744–748. doi: 10.1109/TCSII.2021.3111177.
    [5] RAO S G, CHEON C D, and CRESSLER J D. A millimeter-wave, transformer-based, SiGe distributed attenuator[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(2): 145–148. doi: 10.1109/LMWC.2021.3118291.
    [6] KIM K, LEE H S, and MIN B W. V-W band CMOS distributed step attenuator with low phase imbalance[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(8): 548–550. doi: 10.1109/LMWC.2014.2322442.
    [7] BAE J and NGUYEN C. A novel concurrent 22–29/57–64-GHz dual-band CMOS step attenuator with low phase variations[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(6): 1867–1875. doi: 10.1109/TMTT.2016.2546256.
    [8] HE Yang, ZHANG Tiedi, TANG Yichen, et al. Wideband pHEMT digital attenuator with positive voltage control driver[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(2): 295–298. doi: 10.1109/LMWC.2022.3215495.
    [9] JEONG J C, UHM M, JANG D P, et al. A Ka-band GaAs multi-function chip with wide-band 6-bit phase shifters and attenuators for satellite applications[C]. 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 2019: 1–4.
    [10] ZHANG Qingfeng, ZHAO Chenxi, ZHANG Shuangmin, et al. Mechanism analysis and design of a switched T-type attenuator with capacitive phase compensation technique[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(10): 1438–1441. doi: 10.1109/LMWT.2023.3303181.
    [11] LI Nayu, ZHANG Zijiang, LI Min, et al. A DC–28-GHz 7-bit high-accuracy digital-step attenuator in 55-nm CMOS[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(2): 157–160. doi: 10.1109/LMWC.2021.3120934.
    [12] YUAN Ye, MU Shanxiang, and GUO Yongxin. 6-bit step attenuators for phased-array system with temperature compensation technique[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(8): 690–692. doi: 10.1109/LMWC.2018.2849224.
    [13] BAE J, LEE J, and NGUYEN C. A 10–67-GHz CMOS dual-function switching attenuator with improved flatness and large attenuation range[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(12): 4118–4129. doi: 10.1109/TMTT.2013.2288694.
    [14] KU B H and HONG S. 6-bit CMOS digital attenuators with low phase variations for X-band phased-array systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(7): 1651–1663. doi: 10.1109/TMTT.2010.2049691.
    [15] BULJA S and RULIKOWSKI P. High dynamic range reflection-type attenuator[C]. 2018 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), Wolmar, Mauritius, 2018: 1–2. doi: 10.23919/RADIO.2018.8572448.
    [16] YISHAY R B and ELAD D. W-band SiGe attenuators based on compact low-VSWR topologies[C]. 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, USA, 2017: 638–641. doi: 10.1109/MWSYM.2017.8058650.
    [17] PU Yuqian, SHEN Hongchang, TANG Feihong, et al. Design of millimeter-wave reflective attenuators with capacitive compensation technique[J]. Journal of Southeast University (English Edition), 2023, 39(2): 153–160. doi: 10.3969/j.issn.1003-7985.2023.02.006.
    [18] BULJA S and GREBENNIKOV A. Variable reflection-type attenuators based on varactor diodes[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(12): 3719–3727. doi: 10.1109/TMTT.2012.2216895.
    [19] 赵丽. 新一代宽带无线互联网射频收发机及关键芯片的研究与设计[D]. [博士论文], 东南大学, 2018.

    ZHAO Li. Investigations on RF transceivers and related integrated circuits for a new generation broadband wireless internet[D]. [Ph. D. dissertation], Southeast University, 2018. (in Chinese).
    [20] LUO Jiang, HE Jin, CHEN Pengwei, et al. Micro-strip line 90° phase shifter with double ground slots for D-band applications[J]. Journal of Circuits, Systems and Computers, 2018, 27(12): 1850192. doi: 10.1142/S021812661850192X.
    [21] ZHU Wei, WANG Jiawen, WANG Ruitao, et al. 14.5 A 1V W-band bidirectional transceiver front-end with <1dB T/R switch loss, <1°/dB phase/gain resolution and 12.3% TX PAE at 15.1dBm output power in 65nm CMOS technology[C]. 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, USA, 2021: 226–228. doi: 10.1109/ISSCC42613.2021.9365944.
    [22] ZHU Nengxu and MENG Fanyi. A 190-to-220GHz 4-bit passive attenuator with 1.4dB insertion loss and sub-0.4dB RMS amplitude error using magnetically switchable coupled-lines in 0.13-µm CMOS technology[C]. 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022, Denver, USA, 2022: 746–749. doi: 10.1109/IMS37962.2022.9865616.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  67
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-26
  • 修回日期:  2024-09-05
  • 网络出版日期:  2024-09-10

目录

    /

    返回文章
    返回