高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

STAR-RIS辅助URLLC-NOMA系统的联合波束成形设计

朱建月 吴雨桐 陈晓 谢亚琴 许尧 张治中

朱建月, 吴雨桐, 陈晓, 谢亚琴, 许尧, 张治中. STAR-RIS辅助URLLC-NOMA系统的联合波束成形设计[J]. 电子与信息学报. doi: 10.11999/JEIT240717
引用本文: 朱建月, 吴雨桐, 陈晓, 谢亚琴, 许尧, 张治中. STAR-RIS辅助URLLC-NOMA系统的联合波束成形设计[J]. 电子与信息学报. doi: 10.11999/JEIT240717
ZHU Jianyue, WU Yutong, CHEN Xiao, XIE Yaqin, XU Yao, ZHANG Zhizhong. Joint Beamforming Design for STAR-RIS Assisted URLLC-NOMA System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240717
Citation: ZHU Jianyue, WU Yutong, CHEN Xiao, XIE Yaqin, XU Yao, ZHANG Zhizhong. Joint Beamforming Design for STAR-RIS Assisted URLLC-NOMA System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240717

STAR-RIS辅助URLLC-NOMA系统的联合波束成形设计

doi: 10.11999/JEIT240717
基金项目: 国家自然科学基金(62101273),江苏省自然科学基金(BK20220439, BK20220438),江苏省高等学校基础科学(自然科学)研究面上项目(22KJB510005, 22KJB510033),江苏省重点研发计划(BE2023088),江苏省双创团队((2023)200008号)
详细信息
    作者简介:

    朱建月:女,讲师,研究方向为多址接入技术,大规模MIMO无线传输技术,无线资源管理等

    吴雨桐:女,学士,研究方向为多天线传输技术,多址接入技术等

    陈晓:女,讲师,研究方向为智能超表面,大规模MIMO系统,基于深度学习通信技术等

    谢亚琴:女,副教授,研究方向为无线定位技术,卫星导航,通信网络规划与优化等

    许尧:男,讲师,博士,研究方向为非正交多址接入,正交时频空间调制等

    张治中:男,教授,博士,研究方向为移动通信,通信网络与测试技术等

    通讯作者:

    朱建月 zhujy@nuist.edu.cn

  • 中图分类号: TN929.5

Joint Beamforming Design for STAR-RIS Assisted URLLC-NOMA System

Funds: The National Natural Science Foundation of China (62101273), The Natural Science Foundation of Jiangsu Province of China (BK20220439, BK20220438), The Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 22KJB510005, 22KJB510033), Jiangsu Provincial Key Research and Development Program (BE2023088), Jiangsu Provincial Innovation and Entrepreneurship Team (No. (2023)200008)
  • 摘要: 针对超可靠低时延通信(URLLC)场景,该文研究了融合透射与反射功能的智能超表面(STAR-RIS)辅助的非正交多址接入(NOMA)系统的传输设计。具体而言,该文联合设计了基站端的波束成形向量、RIS端的透射相移矩阵和反射相移矩阵,以在满足基站总功率约束的条件下实现能耗最小化。为解决所提出的非凸问题,该文首先分析了有限块长传输下的用户速率函数特性,并据此将优化问题进行等价转换。随后,采用交替优化和半正定松弛(SDR)方法来解决联合波束设计问题。实验结果表明,与正交多址接入和传统RIS方案相比,所提出的方法在能耗性能上有显著提升。
  • 图  1  STAR-RIS辅助NOMA URLLC系统模型

    图  2  在用户不同的目标数据速率下天线数量与传输功率的关系

    图  3  在不同块长$l$ 下天线数量与发射功率的关系

    图  4  在不同解码错误概率$ \epsilon $下天线数量与发射功率的关系

    图  5  ${\beta _r}$和${\beta _t}$不同取值时天线数量与发射功率的关系

    1  主被动波束成形联合优化设计算法

     1. 初始化:迭代次数iter=0,${\boldsymbol{\Theta }}_t^{(0)}$,${\boldsymbol{\Theta }}_r^{(0)}$,临界值$\eta \gt 0$;
     2. 重复步骤3–步骤4:
     3. 给定${\boldsymbol{\Theta }}_t^{({\text{iter}})}$,${\boldsymbol{\Theta }}_r^{({\text{iter}})}$,通过求解问题式得到${\boldsymbol{w}}_i^*$,$i = 1,2$,
     令${\boldsymbol{w}}_i^{({\text{iter}})} = {\boldsymbol{w}}_i^*$,$i = 1,2$;
     4. 给定${\boldsymbol{w}}_i^{({\text{iter}})}$,$i = 1,2$,通过求解问题式得到${\boldsymbol{\Theta }}_t^*$和${\boldsymbol{\Theta }}_r^*$,令
     ${\boldsymbol{\Theta }}_t^{({\text{iter}})} = {\boldsymbol{\Theta }}_t^*$,${\boldsymbol{\Theta }}_r^{({\text{iter}})} = {\boldsymbol{\Theta }}_r^*$;
     5. 直到系统的最小功率收敛到精度$\eta $或达到指定的迭代次数。
    下载: 导出CSV
  • [1] DANG Shuping, AMIN O, SHIHADA B, et al. What should 6G be?[J]. Nature Electronics, 2020, 3(1): 20–29. doi: 10.1038/s41928-019-0355-6.
    [2] CHOWDHURY M Z, SHAHJALAL M, AHMED S, et al. 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions[J]. IEEE Open Journal of the Communications Society, 2020, 1: 957–975. doi: 10.1109/OJCOMS.2020.3010270.
    [3] . 程强, 金石, 崔铁军. 面向无线通信的智能超表面(英文)[J]. 信息与电子工程前沿(英文版), 2023, 24(12): 1665–1668. doi: 10.1631/FITEE.2320000. (查阅网上资料,本条文献为英文文献信息,请确认) .

    CHENG Qiang, JIN Shi, CUI Tiejun. Reconfigurable intelligent surfaces for wireless communications[J]. Frontiers of Information Technology Electronic Engineering, 2023, 24(12): 1665–1668. doi: 10.1631/FITEE.2320000.
    [4] . 赵亚军. 面向6G的可重构智能超表面: 应用、挑战和解决方案(英文)[J]. 信息与电子工程前沿(英文版), 2023, 24(12): 1669–1688. doi: 10.1631/FITEE.2200666. (查阅网上资料,本条文献为英文文献信息,请确认) .

    ZHAO Yajun. Reconfigurable intelligent surfaces for 6G: Applications, challenges, and solutions[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(12): 1669–1688. doi: 10.1631/FITEE.2200666.
    [5] DING Zhiguo, LV Lu, FANG Fang, et al. A state-of-the-art survey on reconfigurable intelligent surface-assisted non-orthogonal multiple access networks[J]. Proceedings of the IEEE, 2022, 110(9): 1358–1379. doi: 10.1109/JPROC.2022.3174140.
    [6] HOU Tianwei, LIU Yuanwei, SONG Zhengyu, et al. Reconfigurable intelligent surface aided NOMA networks[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2575–2588. doi: 10.1109/JSAC.2020.3007039.
    [7] YANG Gang, XU Xinyue, LIANG Yingchang, et al. Reconfigurable intelligent surface-assisted non-orthogonal multiple access[J]. IEEE Transactions on Wireless Communications, 2021, 20(5): 3137–3151. doi: 10.1109/TWC.2020.3047632.
    [8] ZHU Jianyue, HUANG Yongming, WANG Jiaheng, et al. Power efficient IRS-assisted NOMA[J]. IEEE Transactions on Communications, 2021, 69(2): 900–913. doi: 10.1109/TCOMM.2020.3029617.
    [9] WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897.
    [10] LIU Yuanwei, MU Xidong, XU Jiaqi, et al. STAR: Simultaneous transmission and reflection for 360° coverage by intelligent surfaces[J]. IEEE Wireless Communications, 2021, 28(6): 102–109. doi: 10.1109/MWC.001.2100191.
    [11] MU Xidong, LIU Yuanwei, GUO Li, et al. Simultaneously transmitting and reflecting (STAR) RIS aided wireless communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(5): 3083–3098. doi: 10.1109/TWC.2021.3118225.
    [12] . 刘元玮, 许嘉琪, 王照霖, 等. 面向6G的融合透射与反射智能超表面技术: 基本原理、最新进展和未来方向(英文)[J]. 信息与电子工程前沿(英文版), 2023, 24(12): 1689–1707. doi: 10.1631/FITEE.2300490. (查阅网上资料,本条文献为英文文献信息,请确认) .

    LIU Yuanwei, XU Jiaqi, WANG Zhaolin, et al. Simultaneously transmitting and reflecting (STAR) RISs for 6G: Fundamentals, recent advances, and future directions[J]. Frontiers of Information Technology & Electronic Engineering, 2023, 24(12): 1689–1707. doi: 10.1631/FITEE.2300490.
    [13] ZUO Jiakuo, LIU Yuanwei, DING Zhiguo, et al. Joint design for simultaneously transmitting and reflecting (STAR) RIS assisted NOMA systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 611–626. doi: 10.1109/TWC.2022.3197079.
    [14] WU Chenyu, LIU Yuanwei, MU Xidong, et al. Coverage characterization of STAR-RIS networks: NOMA and OMA[J]. IEEE Communications Letters, 2021, 25(9): 3036–3040. doi: 10.1109/LCOMM.2021.3091807.
    [15] GUO Yi, FANG Fang, CAI Donghong, et al. Energy-efficient design for a NOMA assisted STAR-RIS network with deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 5424–5428. doi: 10.1109/TVT.2022.3224926.
    [16] GAO Qiling, LIU Yuanwei, MU Xidong, et al. Joint location and beamforming design for STAR-RIS assisted NOMA systems[J]. IEEE Transactions on Communications, 2023, 71(4): 2532–2546. doi: 10.1109/TCOMM.2023.3247753.
    [17] 侯天为, 李洁, 王俊, 等. 非正交多址接入的同步透射反射智能超表面信号增强算法[J]. 北京邮电大学学报, 2024, 47(1): 7–12. doi: 10.13190/j.jbupt.2022-279.

    HOU Tianwei, LI Jie, WANG Jun, et al. A signal enhancement algorithm for simultaneous-transmitting- and-reflecting reconfigurable intelligent surface based on non-orthogonal multiple access networks[J]. Journal of Beijing University of Posts and Telecommunications, 2024, 47(1): 7–12. doi: 10.13190/j.jbupt.2022-279.
    [18] YUE Chentao, MILOSLAVSKAYA V, SHIRVANIMOGHADDAM M, et al. Efficient decoders for short block length codes in 6G URLLC[J]. IEEE Communications Magazine, 2023, 61(4): 84–90. doi: 10.1109/MCOM.001.2200275.
    [19] DURISI G, KOCH T, and POPOVSKI P. Toward massive, ultrareliable, and low-latency wireless communication with short packets[J]. Proceedings of the IEEE, 2016, 104(9): 1711–1726. doi: 10.1109/JPROC.2016.2537298.
    [20] POLYANSKIY Y, POOR H V, and VERDÚ S. Channel coding rate in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2307–2359. doi: 10.1109/TIT.2010.2043769.
    [21] HE Shiwen, AN Zhenyu, ZHU Jianyue, et al. Beamforming design for multiuser uRLLC with finite blocklength transmission[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 8096–8109. doi: 10.1109/TWC.2021.3090197.
    [22] SUTTON G J, ZENG Jie, LIU Renping, et al. Enabling technologies for ultra-reliable and low latency communications: From PHY and MAC layer perspectives[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2488–2524. doi: 10.1109/COMST.2019.2897800.
    [23] MAIGNAN A and SCOTT T C. Fleshing out the generalized Lambert W function[J]. ACM Communications in Computer Algebra, 2016, 50(2): 45–60. doi: 10.1145/2992274.2992275.
    [24] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019.
    [25] GRIFFIN J D and DURGIN G D. Complete link budgets for backscatter-radio and RFID systems[J]. IEEE Antennas and Propagation Magazine, 2009, 51(2): 11–25. doi: 10.1109/MAP.2009.5162013.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-19
  • 修回日期:  2025-02-14
  • 网络出版日期:  2025-02-24

目录

    /

    返回文章
    返回