Processing math: 100%
高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种高品质因子模态局域化MEMS电场传感器

王贵杰 储昭志 杨鹏飞 冉莉芳 彭春荣 李建华 张波 闻小龙

高鹰, 谢胜利. 梯度向量正交的相关函数自适应滤波算法[J]. 电子与信息学报, 2004, 26(2): 318-321.
引用本文: 王贵杰, 储昭志, 杨鹏飞, 冉莉芳, 彭春荣, 李建华, 张波, 闻小龙. 一种高品质因子模态局域化MEMS电场传感器[J]. 电子与信息学报. doi: 10.11999/JEIT241008
Gao Ying, Xie Sheng-li. Gradient Vectors Orthogonalization Based Adaptive Filtering Algorithm for Correlation Function[J]. Journal of Electronics & Information Technology, 2004, 26(2): 318-321.
Citation: WANG Guijie, CHU Zhaozhi, YANG Pengfei, RAN Lifang, PENG Chunrong, LI Jianhua, ZHANG Bo, WEN Xiaolong. A High-quality Factor Mode-localized MEMS Electric Field Sensor[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT241008

一种高品质因子模态局域化MEMS电场传感器

doi: 10.11999/JEIT241008
基金项目: 国防基础科研计划(JCKY2022110C013),国家自然科学基金(62031025, 62101054),国家重点研发计划(2022YFB3207300),北京科技大学来华留学课程建设项目2023KCYB003)
详细信息
    作者简介:

    王贵杰:男,博士生,研究方向为MEMS谐振式电场传感器,非线性和参数化激励原理研究

    储昭志:男,副研究员,研究方向为MEMS与微加工、微型电场传感器及其应用

    杨鹏飞:男,副教授,研究方向为微传感器与微系统、新型电学量传感器、低频电场探测

    冉莉芳:女,硕士生,研究方向为微型电场传感器及其非线性研究

    彭春荣:男,研究员,研究方向为微传感器与微系统、新型电学量传感器及应用

    李建华:男,教授,研究方向为微加工技术、MEMS惯性传感器、MEMS光学器件

    张波:男,高级工程师,研究方向为磁电材料、器件和传感系统

    闻小龙:男,副教授,研究方向为微型传感器及系统、电场传感器、磁场传感器

    通讯作者:

    闻小龙 xiaolongwen@ustb.edu.cn

  • 中图分类号: TN4; TP212

A High-quality Factor Mode-localized MEMS Electric Field Sensor

Funds: The National Defense Basic Scientific Research program of China (JCKY2022110C013), The National Natural Science Foundation of China (62031025, 62101054), The National Key Research and Development Program of China (2022YFB3207300), The Curriculum Construction Project for International Students of USTB (2023KCYB003)
  • 摘要: 高性能微机电系统电场传感器是大气电场及非接触电压测量的核心部件,模态局域化效应可显著提升传感器的分辨力等性能,是电场传感器的重要发展方向。然而,基于弱耦合的谐振系统在品质因子较低时会出现模态混叠现象,难以读取有效振幅信息。该文提出一种高品质因子的新型模态局域化MEMS电场传感结构,采用双端音叉设计和T形系绳固定锚点的结构以减少能量损耗,实现了高品质因子和高分辨力,有效避免了模态混叠现象。对该结构进行了理论分析和数值模拟,制备了传感器原理样机,在103Pa气压下对传感器进行了性能测试。测试结果表明,在0~90 kV/m电场强度范围内,电场传感器分辨力达32(V/m)/Hz,品质因子达42 423。
  • 图  1  模态局域化电场传感器工作原理图

    图  2  模态局域化电场传感器的质量-弹簧-阻尼器模型及仿真结果

    图  3  基于数值仿真对比不同品质因子情况下谐振器的幅频响应,品质因子降低会导致模态混叠现象

    图  4  模态局域化电场传感器的工艺流程

    图  5  前放电路照片及放大前路原理图

    图  6  测试系统照片

    图  7  模态局域化电场传感器的两阶模态振型及其测试的幅频和相频曲线

    图  8  谐振器的振幅比和频移的相对偏移量灵敏度对比

    图  9  基于开环测试和闭环测试的幅值比灵敏度对比

    图  10  在10–3 Pa气压下两个谐振器的噪声谱密度

    表  1  基于场磨机制和模态局域化原理的电场传感器性能对比

    传感器类型 分辨力((V/m)/Hz) 品质因子
    场磨式[22] 50 31 034
    场磨式[20] 30 727
    模态局域化[11] 22.9 25 000
    模态局域化[10] 10
    本文 32 42 423
    下载: 导出CSV
  • [1] MONTANYA J, BERGAS J, and HERMOSO B. Electric field measurements at ground level as a basis for lightning hazard warning[J]. Journal of Electrostatics, 2004, 60(2/4): 241–246. doi: 10.1016/j.elstat.2004.01.009.
    [2] POVSCHENKO O and BAZHENOV V. Analysis of modern atmospheric electrostatic field measuring instruments and methods[J]. Technology Audit and Production Reserves, 2023, 4(1(72)): 16–24. doi: 10.15587/2706-5448.2023.285963.
    [3] AHMAD N, GURMANI S F, QURESHI R M, et al. Preliminary results of fair-weather atmospheric electric field in the proximity of Main Boundary Thrust, Northern Pakistan[J]. Advances in Space Research, 2019, 63(2): 927–936. doi: 10.1016/j.asr.2018.09.022.
    [4] HORTSCHITZ W, KAINZ A, BEIGELBECK R, et al. Review on sensors for electric fields near power transmission systems[J]. Measurement Science and Technology, 2024, 35(5): 052001. doi: 10.1088/1361-6501/ad243a.
    [5] WANG Guijie, YANG Pengfei, CHU Zhaozhi, et al. A review on resonant MEMS electric field sensors[J]. Micromachines, 2024, 15(11): 1333. doi: 10.3390/mi15111333.
    [6] PENG Chunrong, CHEN Xianxiang, YE Cao, et al. Design and testing of a micromechanical resonant electrostatic field sensor[J]. Journal of Micromechanics and Microengineering, 2006, 16(5): 914–919. doi: 10.1088/0960-1317/16/5/006.
    [7] YANG Pengfei, PENG Chunrong, FANG Dongming, et al. Design, fabrication and application of an SOI-based resonant electric field microsensor with coplanar comb-shaped electrodes[J]. Journal of Micromechanics and Microengineering, 2013, 23(5): 055002. doi: 10.1088/0960-1317/23/5/055002.
    [8] WEN Xiaolong, YANG Pengfei, CHU Zhaozhi, et al. Toward atmospheric electricity research: A low-cost, highly sensitive and robust balloon-borne electric field sounding sensor[J]. IEEE Sensors Journal, 2021, 21(12): 13405–13416. doi: 10.1109/JSEN.2021.3070130.
    [9] GAO Yahao, LIU Xiangming, PENG Simin, et al. A wafer-level vacuum-packaged vertical resonant electric field microsensor[J]. IEEE Transactions on Electron Devices, 2024, 71(1): 782–789. doi: 10.1109/TED.2023.3331335.
    [10] LIU Xiangming, WANG Zilong, WU Zhengwei, et al. Enhanced sensitivity and stability of a novel resonant MEMS electric field sensor based on closed-loop feedback[J]. IEEE Sensors Journal, 2021, 21(20): 22536–22543. doi: 10.1109/JSEN.2021.3107511.
    [11] HAO Yongcun, WANG Chenggang, SUN Zheng, et al. A mode-localized DC electric field sensor[J]. Sensors and Actuators A: Physical, 2022, 333: 113244. doi: 10.1016/j.sna.2021.113244.
    [12] GUO Xin, JIANG Yongchang, and LI Cheng. A parametrically tunable airflow sensor based on electrically coupled resonators[J]. IEEE Sensors Journal, 2023, 23(20): 24316–24326. doi: 10.1109/JSEN.2023.3310271.
    [13] LYU Ming, ZHAO Jian, KACEM Najib, et al. Computational investigation of high-order mode localization in electrostatically coupled microbeams with distributed electrodes for high sensitivity mass sensing[J]. Mechanical Systems and Signal Processing, 2021, 158: 107781. doi: 10.1016/j.ymssp.2021.107781.
    [14] WANG Linlin, WANG Chen, WANG Yuan, et al. A review on coupled bulk acoustic wave MEMS resonators[J]. Sensors, 2022, 22(10): 3857. doi: 10.3390/s22103857.
    [15] LEE J E Y, YAN Jize, and SESHIA A A. Study of lateral mode SOI-MEMS resonators for reduced anchor loss[J]. Journal of Micromechanics and Microengineering, 2011, 21(4): 045010. doi: 10.1088/0960-1317/21/4/045010.
    [16] CANDLER R N, DUWEL A, VARGHESE M, et al. Impact of geometry on thermoelastic dissipation in micromechanical resonant beams[J]. Journal of Microelectromechanical Systems, 2006, 15(4): 927–934. doi: 10.1109/JMEMS.2006.879374.
    [17] ZHANG Manna, WANG Rui, ZHANG Shangyang, et al. A coupled-mode analysis of mode localization on weakly-coupled silicon micromechanical resonators with damping[J]. Sensors and Actuators A: Physical, 2024, 378: 115822. doi: 10.1016/j.sna.2024.115822.
    [18] PANDIT M, ZHAO Chun, SOBREVIELA G, et al. Practical limits to common mode rejection in mode localized weakly coupled resonators[J]. IEEE Sensors Journal, 2020, 20(13): 6818–6825. doi: 10.1109/JSEN.2019.2930117.
    [19] LI Han, ZHANG Zhao, ZU Luhan, et al. Micromechanical mode-localized electric current sensor[J]. Microsystems & Nanoengineering, 2022, 8(1): 42. doi: 10.1038/s41378-022-00375-1.
    [20] 毋正伟, 彭春荣, 杨鹏飞, 等. 谐振式微型电场传感器芯片级真空封装及测试[J]. 电子与信息学报, 2015, 37(9): 2282–2286. doi: 10.11999/JEIT150105.

    WU Zhengwei, PENG Chunrong, YANG Pengfei, et al. Chip-level vacuum package and test of resonant MEMS electric field sensor[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2282–2286. doi: 10.11999/JEIT150105.
    [21] LIU Zhonghua, CHEN Yuzhi, WANG Xuefeng, et al. Nonlinearity enhanced mode localization in two coupled MEMS resonators[J]. International Journal of Mechanical Sciences, 2024, 271: 109133. doi: 10.1016/j.ijmecsci.2024.109133.
    [22] PENG Chunrong, YANG Pengfei, ZHANG Haiyan, et al. Design of a SOI MEMS resonant electric field sensor for power engineering applications[C]. The 2010 IEEE SENSORS, Waikoloa, USA, 2010: 1183–1186. doi: 10.1109/ICSENS.2010.5690693.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  23
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-12
  • 修回日期:  2025-03-12
  • 网络出版日期:  2025-03-19

目录

    /

    返回文章
    返回