高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于太赫兹智能反射面波束色散和分裂的快速感知方法

郝万明 杨兰 朱政宇 李兴旺

郝万明, 杨兰, 朱政宇, 李兴旺. 基于太赫兹智能反射面波束色散和分裂的快速感知方法[J]. 电子与信息学报. doi: 10.11999/JEIT240789
引用本文: 郝万明, 杨兰, 朱政宇, 李兴旺. 基于太赫兹智能反射面波束色散和分裂的快速感知方法[J]. 电子与信息学报. doi: 10.11999/JEIT240789
HAO Wanming, YANG Lan, ZHU Zhengyu, LI Xingwang. Fast Sensing Method Based on Beam Squint and Beam Split of Terahertz Reflective Intelligent Surfaces[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240789
Citation: HAO Wanming, YANG Lan, ZHU Zhengyu, LI Xingwang. Fast Sensing Method Based on Beam Squint and Beam Split of Terahertz Reflective Intelligent Surfaces[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240789

基于太赫兹智能反射面波束色散和分裂的快速感知方法

doi: 10.11999/JEIT240789
基金项目: 国家自然科学基金(62471440),东南大学移动通信全国重点实验室开放研究基金(2024D12)
详细信息
    作者简介:

    郝万明:男,副教授,研究方向为毫米波通信、太赫兹通信、大规模MIMO技术、物理层安全技术、智能超表面技术等

    杨兰:女,硕士生,研究方向为太赫兹通信、智能反射面技术等

    朱政宇:男,副教授,研究方向为智能反射面技术、物理层安全技术、无线通信与信号处理等

    李兴旺:男,副教授,研究方向为非正交多址接入(NOMA)、智能反射面通信、物理层安全、无线信息与能量协同传输等

    通讯作者:

    郝万明 iewmhao@zzu.edu.cn

  • 中图分类号: TN92

Fast Sensing Method Based on Beam Squint and Beam Split of Terahertz Reflective Intelligent Surfaces

Funds: The National Natural Science Foundation of China (62471440), The Open Research Fund of the National Mobile Communications Research Laboratory, Southeast University (2024D12)
  • 摘要: 针对太赫兹智能反射面(RIS)系统中基于波束扫描感知耗时较长问题,该文提出一种基于太赫兹RIS波束色散和分裂的快速感知方法。通过在每个RIS元件处部署实时延(TTD)以动态调整波束色散程度,设置大阵列RIS单元间距以形成波束分裂效应,进而联合波束色散和分裂实现目标区域快速感知。具体地,将感知区域分为多个子区域,并基于RIS波束色散优化TTD和RIS反射元件相移,以覆盖单一子区域。同时,利用波束分裂无缝覆盖多个子区域,相比使用单一波束扫描感知显著降低了时间开销。而后,为减少回波信号路径损耗,在RIS处配置主动感知元件,用于直接接收并分析回波信号。在此基础上,推导出感知目标角度估计值及其均方根误差(RMSE)。仿真结果表明了所提快速感知方案的有效性。
  • 图  1  RIS辅助太赫兹感知系统模型

    图  2  波束色散效应下的波束图样

    图  3  波束分裂效应下的波束图样($P = 3$)

    图  4  RIS元件中有关二极管结构电路图

    图  5  RIS元件不同间距的阵列图

    图  6  基于TTD的RIS元件结构图

    图  7  基于TTD的波束色散

    图  8  基于TDS的联合RIS波束色散和分裂 (P=2)

    图  9  基于ATDS的联合RIS波束色散和分裂 ($P = 2$)

    图  10  基于TDS的RMSE与载波数目之间的关系

    图  11  基于ATDS的RMSE与载波数目之间的关系

  • [1] RAPPAPORT T S, XING Yunchou, KANHERE O, et al. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond[J]. IEEE Access, 2019, 7: 78729–78757. doi: 10.1109/ACCESS.2019.2921522.
    [2] XUE Qing, JI Chengwang, MA Shaodan, et al. A survey of beam management for mmWave and THz communications towards 6G[J]. IEEE Communications Surveys & Tutorials, 2024, 26(3): 1520–1559. doi: 10.1109/COMST.2024.3361991.
    [3] SU Xin, HE Ruisi, ZHANG Peng, et al. Joint precoding for RIS-assisted wideband THz cell-free massive MIMO systems[J]. IEEE Internet of Things Journal, 2024, 11(20): 33361–33370. doi: 10.1109/JIOT.2024.3426937.
    [4] WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897.
    [5] HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609.
    [6] YAN Wencai, HAO Wanming, HUANG Chongwen, et al. Beamforming analysis and design for wideband THz reconfigurable intelligent surface communications[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(8): 2306–2320. doi: 10.1109/JSAC.2023.3288235.
    [7] LI Jinyang, ZHANG Shun, LI Zan, et al. User sensing in RIS-aided wideband mmWave system with beam-squint and beam-split[J]. IEEE Transactions on Communications, 2025, 73(2): 1304–1319. doi: 10.1109/TCOMM.2024.3439445.
    [8] HAO Wanming, YOU Xiaobei, ZHOU Fuhui, et al. The far-/near-field beam squint and solutions for THz intelligent reflecting surface communications[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 10107–10118. doi: 10.1109/TVT.2023.3254153.
    [9] ELBIR A M, SHI Wei, PAPAZAFEIROPOULOS A K, et al. Terahertz-band channel and beam split estimation via array perturbation model[J]. IEEE Open Journal of the communications society, 2023, 4: 892–907. doi: 10.1109/OJCOMS.2023.3263625.
    [10] 郝万明, 尤晓蓓, 孙钢灿, 等. 超宽带太赫兹通信中天线结构设计及其波束色散影响分析[J]. 电子与信息学报, 2023, 45(1): 200–207. doi: 10.11999/JEIT211290.

    HAO Wanming, YOU Xiaobei, SUN Gangcan, et al. Design of antenna structure and analysis of beam split effect in ultra-band width terahertz communications[J]. Journal of Electronics & Information Technology, 2023, 45(1): 200–207. doi: 10.11999/JEIT211290.
    [11] ZHAI Bangzhao, ZHU Yilun, TANG Aimin, et al. THzPrism: Frequency-based beam spreading for terahertz communication systems[J]. IEEE Wireless Communications Letters, 2020, 9(6): 897–900. doi: 10.1109/LWC.2020.2974468.
    [12] TAN Jinbo and DAI Linglong. Wideband beam tracking based on beam zooming for THz massive MIMO[C]. GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–6. doi: 10.1109/GLOBECOM42002.2020.9348222.
    [13] GAO Feifei, XU Liangyuan, and MA Shaodan. Integrated sensing and communications with joint beam-squint and beam-split for mmWave/THz massive MIMO[J]. IEEE Transactions on Communications, 2023, 71(5): 2963–2976. doi: 10.1109/TCOMM.2023.3252584.
    [14] CAI Wenhao, LI Hongyu, LI Ming, et al. Practical modeling and beamforming for intelligent reflecting surface aided wideband systems[J]. IEEE Communications Letters, 2020, 24(7): 1568–1571. doi: 10.1109/LCOMM.2020.2987322.
    [15] LI Renwang, SHAO Xiaodan, SUN Shu, et al. Beam scanning for integrated sensing and communication in IRS-aided mmWave systems[C]. 2023 IEEE 24th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Shanghai, China, 2023: 196–200. doi: 10.1109/SPAWC53906.2023.10304548.
  • 加载中
图(11)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  35
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-12
  • 修回日期:  2025-02-17
  • 网络出版日期:  2025-02-26

目录

    /

    返回文章
    返回