Fast Sensing Method Based on Beam Squint and Beam Split of Terahertz Reflective Intelligent Surfaces
-
摘要: 针对太赫兹智能反射面(RIS)系统中基于波束扫描感知耗时较长问题,该文提出一种基于太赫兹RIS波束色散和分裂的快速感知方法。通过在每个RIS元件处部署实时延(TTD)以动态调整波束色散程度,设置大阵列RIS单元间距以形成波束分裂效应,进而联合波束色散和分裂实现目标区域快速感知。具体地,将感知区域分为多个子区域,并基于RIS波束色散优化TTD和RIS反射元件相移,以覆盖单一子区域。同时,利用波束分裂无缝覆盖多个子区域,相比使用单一波束扫描感知显著降低了时间开销。而后,为减少回波信号路径损耗,在RIS处配置主动感知元件,用于直接接收并分析回波信号。在此基础上,推导出感知目标角度估计值及其均方根误差(RMSE)。仿真结果表明了所提快速感知方案的有效性。Abstract:
Objective Reflecting Intelligent Surface (RIS)-aided Terahertz (THz) communications are considered a key technology for future Sixth-Generation (6G) mobile communication systems addressing issues such as signal attenuation and Line-of-Sight (LoS) link blockage issues, due to their ultra-large bandwidth and low power consumption. However, the frequency independent characteristics of RIS elements can cause beam squint effects, where beams of different carriers are directed at different angles. Although this reduces the beam gain received by users, it can be leveraged to enhance sensing capabilities in sensing applications. Specifically, beam squint allows for simultaneous sensing of a target using multiple carrier beams directed in different directions. Existing studies have explored beam squint for beam training. For example, by studying near-field beam squint and True Time Delay (TTD) to generate beams that focus at multiple positions across different frequencies, enabling rapid beam training with reduced overhead. Additionally, combining TTD with beam squint and beam split for sensing extends the beam coverage area and enables the quick acquisition of user locations through feedback. However, there is no research on jointly utilizing beam squint and beam split for sensing in RIS-assisted THz systems, thus understanding the full potential of beam squint in sensing. This paper aims to conduct detailed research on the use of beam squint for sensing in such systems. Methods To address the time-consuming issue of beam scanning in RIS-assisted THz systems, a fast sensing method based on RIS beam squint and split effects is proposed. Each RIS element is equipped with a TTD mechanism to dynamically adjust the degree of beam squint, while the large array RIS units are spaced to induce the beam split effect. By combining beam quint and beam split, the method enables rapid sensing of the target area. Specifically, the sensing area is divided into multiple sub-areas, with the TTD and the phase shift at the RIS elements optimized to cover each sub-area based on beam squint. The beam split effect is then used to seamlessly cover multiple sub-areas, significantly reducing time overhead compared to single beam scanning. To further mitigate echo signal path loss, active sensing elements are configured at the RIS for direct reception and analysis of the echo signals. The estimation of the sensing target’s angle, along with its root mean square error (RMSE), is derived based on this approach. Results and Discussions Consider the RIS-assisted THz sensing system model ( Fig. 1 ). By deriving the channel and beam gain expressions, the beam patterns under the beam squint effect are analyzed (Fig. 2 ). Based on the internal structural diagram of the RIS (Fig. 4 ), the beam split effect is examined by varying the spacings between RIS elements (Fig. 5 ), with corresponding beam patterns (Fig. 3 ) presented for different spacings. Next, the RIS structure utilizing TTD (Fig. 6 ) allows for flexible adjustment of the beam squint and split degrees, significantly expanding the beam coverage area compared to traditional beam squint and split methods (Fig. 7 ,Fig. 8 ). Additionally, to fine-tune the gaps between adjacent split beams, the ATDS method is proposed. By combining beam squint and beam split, this method achieves near-seamless coverage of all subareas (Fig. 9 ). Finally, the target direction is estimated by analyzing the echo signals received at the RIS-SE, based on the RSME. The simulation results demonstrate the relationship between sensing accuracy and the number of carriers (Fig.10 ,Fig. 11 ), confirming the effectiveness and feasibility of the rapid sensing method combining beam squint and split.Conclusions This paper investigates the issues of beam squint and beam split in RIS-assisted THz systems and proposes a rapid sensing method that combines both effects. Specifically, TTD is used to adjust the direction of subcarrier beams based on beam squint. To expand the sensing area, the combined effects of beam squint and beam split, divide the sensing area into multiple subareas, which are simultaneously covered by multiple carrier beams within a single OFDM block. The target direction is then estimated based on echo signals received at the RIS-SE, with sensing error measured using the RMSE between the true and estimated values. Simulation results demonstrate the feasibility and effectiveness of the proposed rapid sensing method. However, it is found that while the beam squint effect significantly reduces beam gain and communication performance, it expands the beam coverage area and enhances sensing capabilities. Therefore, in an integrated sensing and communication system, the impact of beam squint should be considered at different stages. Future research will focus on improving the performance of such integrated systems. -
Key words:
- Terahertz (THz) /
- Reflecting Intelligent Surface (RIS) /
- Beam squint /
- Beam split /
- Fast sensing
-
1. 引言
太赫兹(0.1~10 THz)通信拥有超宽带宽,可实现高速率数据传输、高精度目标感知和定位。但是,太赫兹信号传输损耗高,尤其当太赫兹信号被障碍物遮挡时,其通信和感知性能会急剧下降[1–3]。为此,可以部署由大量低功耗无源元件组成的可重构智能反射面(Reflecting Intelligent Surface, RIS)以智能改变无线传输环境,提供额外的反射路径,解决视距(Line of Sight, LoS)链路阻塞问题,增强接收信号能量,提高太赫兹通感性能[4]。因此,RIS辅助太赫兹感知具有广阔的应用前景[5–7]。一般来说,RIS元件的结构比较简单,通常配备与频率无关的移相电路,只能调整反射信号的振幅和相位。因此,在RIS辅助太赫兹系统中,RIS每个反射元件仅能控制单一载波的波束方向,而对于多载波RIS系统将出现不同子载波波束指向不同方向,此现象称为波束色散效应。尽管波束色散在通信中会降低用户接收的波束增益[8–10],但是却可以利用色散特性提升感知能力。例如,文献[11]提出一种名为太赫兹棱镜(THz prism)的新型相控阵天线结构,利用波束色散效应,实现基于频率的波束扩展。文献[12]利用实时延(True Time Delay, TTD)自由控制近场中波束色散范围和轨迹,通过频域波束色散效应进行目标定位。文献[13]在基站(Base Station, BS)波束色散基础上,引入波束分裂效应来扩大波束覆盖范围,从而增加单次感知范围。
基于上述分析,本文提出了联合太赫兹RIS处的波束色散和分裂快速感知方法,具体而言,基于RIS辅助太赫兹感知系统利用太赫兹RIS处产生的波束色散效应,通过调整波束范围进行区域感知。然后,设置大间距RIS反射元件产生波束分裂效应以扩大感知范围,并联合波束色散和分裂进行多个子区域感知。通过优化RIS处的TTD和反射单元相移,实现RIS处的波束色散覆盖单一子区域,波束分裂无缝覆盖多个子区域。最后,根据RIS处配备的有源感知元件接收到回波信号推导出目标所在方向估计值及其均方根误差(Root Mean Square Error, RMSE),仿真结果表明了所提快速感知方案的有效性。
2. 系统模型
考虑如图1所示的RIS辅助太赫兹感知系统模型,其中单天线感知BS与感知区域间的直接链路被障碍物等阻断,需借助RIS辅助感知。其中RIS是由无源和有源元件共同组成,无源元件主要是对信号进行反射,简称“-RE”元件;有源元件主要是接收并分析回波信号,简称“-SE”元件。具体感知过程如下:由R个RE元件组成的均匀线性反射阵列(Uniform Linear Array, ULA)将感知BS发射的感知信号反射至感知区域,由Rs个SE元件组成的ULA接收回波并进行目标方向估计。
g(t)和f(t)分别表示BS-RIS链路和RIS-目标链路的时域信道向量。基于远场假设, BS到第r个RIS元件的第l1路径时延、第r个元件到目标的第l2路径时延τl1,r, τl2,r分别表示为
τl1,r=τl1,1+(r−1)dsinθl1BRc=τl1,1+(r−1)ϕl1BRfc (1) τl2,r=τl2,1+(r−1)dsinθl2RTc=τl2,1+(r−1)ϕl2RTfc (2) 其中,ϕl1BR=dsinθl1BR/λc, ϕl2RT=dsinθl2RT/λc分别表示BS的归一化离开角(Angle of Departure, AoD)、到达角(Angle of Arrival, AoA)。假设d, c, λc, fs, fc分别表示相邻RIS元件间距、光速、波长、带宽和载波中心频率。因此, BS到第r个RIS元件信道脉冲响应、第r个RIS元件到目标的信道脉冲响应可表示为gr(t)=αl1e−j2πfcτl1,rδ(t−τl1,r), fr(t)=αl2e−j2πfcτl2,rδ(t−τl2,r)。则目标在第r个RIS元件处接收的信号可表示为
yr(t)=fr(t)∗(θrgr(t)∗s(t))+n=θrL1∑l1=1L2∑l2=1αl1αl2e−j2πfcτl1,r⋅e−j2πfcτl2,rs(t−τl1,r−τl2,r)+n=θrhr(t)∗s(t)+n (3) 其中,s(t)为BS发出的信号,n为加性复高斯噪声。记 {\boldsymbol{\theta}} = {[{\theta _{\text{1}}},{\theta _{\text{2}}}, \cdots ,{\theta _R}]^{\text{T}}} \in {\mathbb{C}^{R \times 1}} , {\theta _r} = {\beta _r}{{\text{e}}^{{\text{j}}{\phi _r}}} 分别表示RIS反射系数向量和第 r 个RIS元件的反射系数。 {\beta _r} \in [0,1] 和 {\phi _r} \in [0,2{\pi }) 分别表示第 r 个反射单元的幅度和相移。为最大化RIS的信号功率和简化硬件设计,通常固定 {\beta _r} = 1,{\forall _r} 。因此, {\boldsymbol{\theta}} 满足 {\boldsymbol{\theta}} = [{{\text{e}}^{{\text{j}}{\phi _{\text{1}}}}}, {{\text{e}}^{{\text{j}}{\phi _2}}}, \cdots ,{{\text{e}}^{{\text{j}}{\phi _R}}}]^{\text{T}} 。 * 表示卷积运算,级联BS-RIS-目标在第 r 元件的第 l 条路径处的时域信道脉冲响应 {h_r}(t) 表示为
\begin{split} {h_r}(t) =\;& \sum\limits_{{l_1} = 1}^{{L_1}} \sum\limits_{{l_2} = 1}^{{L_2}} {\alpha _{{l_1}}}{\alpha _{{l_2}}}{{\text{e}}^{{{ - {\mathrm{j}}2\pi }}{f_{\text{c}}}{\tau _{{l_{1,r}}}}}}{{\text{e}}^{{{ - {\mathrm{j}}2\pi }}{f_{\text{c}}}{\tau _{{l_{2,r}}}}}}\\ &\cdot \delta (t - {\tau _{{l_{1,r}}}} - {\tau _{{l_{2,r}}}}) \end{split} (4) 对式(4)进行傅里叶变换,频域信道响应{h_r}(f)可以表示为
\begin{split} {h_{\text{r}}}(f) \;& = \int\limits_{ - \infty }^{ + \infty } {{h_r}(t){{\text{e}}^{{{ - {\mathrm{j}}}}2{\pi }ft}}{\mathrm{d}}t} \\ & = \sum\limits_{{l_1} = 1}^{{L_1}} {\sum\limits_{{l_2} = 1}^{{L_2}} {\alpha {{\text{e}}^{{{ - {\mathrm{j}}2\pi }}(r - 1){\phi _{{l_3}}}(1 + \frac{f}{{{f_{\text{c}}}}})}}{{\text{e}}^{{{ - {\mathrm{j}}2\pi }}f{\tau _{{l_3}}}}}} } \end{split} (5) 其中,\alpha = {\alpha _{{l_1}}}{\alpha _{{l_2}}}, {\phi _{{l_{\text{3}}}}} = \phi _{{\text{BR}}}^{{l_1}} - \phi _{{\text{RT}}}^{{l_2}} , {\tau _{{l_3}}} = {\tau _{{l_{1,r}}}} + {\tau _{{l_{2,r}}}}分别定义为级联BS-RIS-目标信道等效复路径增益、角度和时延。假设 {L_1} = 1 , {L_2} = 1 。则级联信道可重新表示为
{h_r}(f) = \alpha {{\text{e}}^{{{ - {\mathrm{j}}}}2{\pi }(r - 1)\phi (1 + \frac{f}{{{f_{\text{c}}}}})}}{{\text{e}}^{{{ - {\mathrm{j}}}}2{\pi }f{\tau _{_0}}}} (6) 其中,\phi = d(\sin {\theta _{{\text{BR}}}} - \sin {\theta _{{\text{RT}}}})/{\lambda _{\text{c}}}, {\tau _0} = {\tau _0}^{{\text{BR}}} + {\tau _0}^{{\text{RT}}}分别为单路径级联BS-RIS-目标信道的等效角度、等效时延,记v = \sin {\theta _{{\text{BR}}}} - \sin {\theta _{{\text{RT}}}}。级联信道矢量{\boldsymbol{h}}(f) = {[{h_{\text{1}}}(f),{h_{\text{2}}}(f),\cdots,{h_R}(f)]^{\text{T}}}具体可以描述为
{\boldsymbol{h}}(f) = \alpha {\boldsymbol{a}}(f,v){{\text{e}}^{ - {\text{j}}2{\pi }f{\tau _0}}} (7) 其中空间转向矢量可表示为{\boldsymbol{a}}(f,v) = [1,{{\text{e}}^{{{ - {\mathrm{j}}}}2{\pi }\frac{d}{{{\lambda _{\text{c}}}}}(1 + \frac{f}{{{f_{\text{c}}}}})v}}, \cdots, {{\text{e}}^{{{ - {\mathrm{j}}}}2{\pi }\frac{d}{{{\lambda _{\text{c}}}}}(R - 1)(1 + \frac{f}{{{f_{\text{c}}}}})v}}]^{\text{T}} 。
2.1 波束色散效应
在传统阵列信号处理中,为避免相位模糊,通常情况下假设相邻元件间距 d = {\lambda _{\text{c}}}/2 ,则级联BS-RIS-目标频域信道响应 {\boldsymbol{h}}(f) 可以表示为
{{\boldsymbol{h}}_1}(f) = \alpha {{\boldsymbol{a}}_1}(f,v){{\text{e}}^{{{ - {\mathrm{j}}}}2{\pi }f{\tau _0}}} (8) 其中,空间转向矢量{{\boldsymbol{a}}_1}(f,v) = [1,{{\text{e}}^{{{ - {\rm j}\pi }}v(1 + \frac{f}{{{f_{\text{c}}}}})}},\cdots, {{\text{e}}^{{{ - {\rm j}\pi }}v(R - 1)(1 + \frac{f}{{{f_{\text{c}}}}})}}]^{\text{T}}。频率f处阵列增益可表示为
\begin{split} {g_{\text{1}}}(f,v,{\varphi _r}) \;&= \left| {{\boldsymbol{a}}_1^{\text{T}}(f,v){\boldsymbol{\theta}} } \right| \\ & = \left| {\sum\limits_{r = 1}^R {{{\text{e}}^{{{ - {\rm j}\pi }}(r - 1)v(1 + \frac{f}{{{f_{\text{c}}}}})}}{{\text{e}}^{{\text{j}}{\phi _r}}}} } \right| \\ & = \left| {\sum\limits_{r = 1}^R {{{\text{e}}^{{\text{j}}[{\phi _r} - {\pi }(r - 1)(1 + \frac{f}{{{f_{\text{c}}}}})v]}}} } \right| \end{split} (9) 假设v = {v_{\text{c}}},{v_{\text{c}}}为中心频率处的等效方向,此时f = {f_{\text{c}}}。为最大化归一化阵列增益 {g_1}({f_{\text{c}}},{v_{\text{c}}},{\phi _r}) ,可得{\phi _{r{\text{,c}}}} = 2{\pi }(r - 1){v_{\text{c}}}。因此,反射系数矢量可以表示为{{\boldsymbol{\theta}} _{\text{c}}} = {[1,{{\text{e}}^{{\text{j}}2{\pi }{v_{\text{c}}}}},\cdots,{{\text{e}}^{{\text{j}}2{\pi }(R - 1){v_{\text{c}}}}}]^{\text{T}}}。在频率 f 下任意方向 v 下获得的波束阵列增益可表示为
\begin{split} {g_{_1}}(f,v,{\varphi _{r{\text{,c}}}}) =\;& \left| {{\boldsymbol{a}}_1^{\text{T}}(f,v){{\boldsymbol{\theta}} _{\text{c}}}} \right| \\ =\;& \left| {\sum\limits_{r = 1}^R {{{\text{e}}^{{\text{{{j}}\pi }}(r - 1)[2{v_{\text{c}}} - (1 + \frac{f}{{{f_{\text{c}}}}})v]}}} } \right| \\ =\;& \left| {\frac{{\sin \left(\dfrac{{R{\pi }}}{2}\rho \right)}}{{\sin \left(\dfrac{{\pi }}{2}\rho \right)}}{{\text{e}}^{{\text{j}}\frac{{(R - 1){\pi }}}{2}\rho }}} \right| \end{split} (10) 其中,\rho = 2{v_{\text{c}}} - \left(1 + {f}/{{{f_{\text{c}}}}}\right)v,利用等式\displaystyle\sum\nolimits_{r = 1}^R {{{\text{e}}^{{\text{j}}(r - 1){\pi }x}}} = \left({{\sin \left(\dfrac{{R{\pi }}}{2}x\right)}}/{{\sin \left(\dfrac{{\pi }}{2}x\right)}}\right){{\text{e}}^{{\text{j}}\frac{{(R - 1){\pi }}}{2}x}}。为满足波束增益最大化使\rho = 0,此时,波束方向与频率之间的关系为v = \dfrac{2}{{1 + f/{f_{\text{c}}}}}{v_{\text{c}}}。由于在窄带情况下f/{f_{\text{c}}} \approx 1,则在所有频率下波束的方向v \approx {v_{\text{c}}},这意味着所有子载波上的波束将聚焦在同一方向上,并且每个子载波的最大波束增益可以在该方向上获得。然而,对于太赫兹系统,f/{f_{\text{c}}} \approx 1不再成立,出现明显的波束色散效应,其波束图样如图2所示。
2.2 波束分裂效应
当元件间距大于{\lambda _{\text{c}}}/2,由于空间导向矢量的范德蒙德结构而发生相位模糊,根据具体数值的不同,将会产生不同数量的和主瓣强度相当的旁瓣,称为“栅瓣”,波束分裂效应的波束图样如图3所示。具体地,假设间距为d = P{\lambda _{\text{c}}}/2,其中P为分裂系数,取值为正整数。改变RIS元件间距d的有效方法是部署具有半波长间距的RIS阵列,通过控制RIS元件结构中的二极管的通断来调整元件之间的间距,内部电路图如图4所示[14],根据d的不同实现不同间距的子阵列,如图5所示。
将d = P{\lambda _{\text{c}}}/2代入式(7)得,级联BS-RIS-目标频域信道响应{\boldsymbol{h}}(f)可以表示为
{{\boldsymbol{h}}_2}(f) = \alpha {{\boldsymbol{a}}_2}(f,v){{\text{e}}^{{{ - {\mathrm{j}}}}2{\pi }f{\tau _0}}} (11) 其中,空间转向矢量{{\boldsymbol{a}}_2}(f,v) = [1,{{\text{e}}^{{{ - {\rm j}\pi }}Pv(1 + \frac{f}{{{f_{\text{c}}}}})}},\cdots, {{\text{e}}^{{{ - {\rm j}\pi }}Pv(R - 1)(1 + \frac{f}{{{f_{\text{c}}}}})}}]^{\text{T}}。与2.1节分析类似,假设f = {f_{\text{c}}}时,v = P{v_{\text{c}}},此时设置{\phi _{r{\text{,c}}}} = 2{\pi }(r - 1) P{v_{\text{c}}}。反射系数矢量{{\boldsymbol{\theta}} _{\text{c}}}可以表示为{{\boldsymbol{\theta}} _{\text{c}}} = [1,{{\text{e}}^{{{{\mathrm{j}}2\pi }}P{v_{\text{c}}}}},\cdots, {{\text{e}}^{{\text{j}}2{\pi }(R - 1)P{v_{\text{c}}}}}]^{\text{T}}。在频率 f 下任意方向 v 下获得的波束阵列增益可表示为
\begin{split} {g_2}(f,v,{\phi _{r{\text{,c}}}})\;& = \left| {{{\boldsymbol{a}}_2}^{\text{T}}(f,v){{\boldsymbol{\theta}} _{\text{c}}}} \right| \\ & = \left| {\sum\limits_{r = 1}^R {{{\text{e}}^{{{{\mathrm{j}}\pi }}(r - 1)P[2{v_{\text{c}}} - (1 + \frac{f}{{{f_{\text{c}}}}})v]}}} } \right|\\ &= \left| {\frac{{\sin \left(\dfrac{{R{\pi }}}{2}\rho \right)}}{{\sin \left(\dfrac{{\pi }}{2}\rho \right)}}{{\text{e}}^{{\text{j}}\frac{{(R - 1){\pi }}}{2}\rho }}} \right| \end{split} (12) 其中,\rho = P\left(2{v_{\text{c}}} - \left(1 + {f}/{{{f_{\text{c}}}}}\right)v\right)。可以看出,为满足波束增益最大化应当使\rho = 0,此时波束方向与频率之间的关系为v' = \dfrac{2}{{1 + f/{f_{\text{c}}}}}{v_{\text{c}}}。
虽然波束分裂波束方向与频率关系式与上文波束色散分析形式相同,但原理上并不相同。主要区别在于波束色散效应使波束方向随频率的变化而变化,但是每个载波上只有一个波束方向。然而,波束分裂效应因为栅瓣的存在,使同一频率处的波束分散为多个方向,可以看成一个波束分裂为多个指向不同的波束,其分裂个数与系数P有关。相邻RIS元件间产生的相位差为\Delta \phi = 2{\pi }\dfrac{{d{\text{sin}}{\theta _{{\text{BR}}}}}}{{{\lambda _{\text{c}}}}}。栅瓣波束方向记为v = \arcsin \left(\dfrac{{\Delta \phi }}{{2{\pi }}}\dfrac{{{\lambda _c}}}{d}\right),由周期性得v = \arcsin \left(\dfrac{{\Delta \varphi + 2{\pi }m}}{{2{\pi }}}\dfrac{{{\lambda _{\text{c}}}}}{d}\right), m \in \forall \mathbb{Z}。因此,与P有关的波束方向表达式为v = \arcsin \left( \dfrac{{2{\pi }\dfrac{{d{\text{sin}}{\theta _{{\text{BR}}}}}}{{{\lambda _{\text{c}}}}} + 2{\pi }m}}{{2{\pi }}}\dfrac{{{\lambda _{\text{c}}}}}{d} \right) = \arcsin \left(\sin {\theta _{{\text{BR}}}} + \dfrac{{2m}}{P}\right)。由于其中\arcsin x函数的特殊性质,定义域 x \in [ - 1,1] ,因此限制了 m 的取值。当 m = 0 时,无论 P 取何值,该式均成立,即 m = 0 是通解。当 P = 1 时,即 d = {\lambda _{\text{c}}}/2 ,得 v = \arcsin (\sin {\theta _{{\text{BR}}}} + 2m) ,由于 \sin{\theta _{{\text{BR}}}} \in [ - 1,1] ,所以 m 有且只有 m = 0 这1个解,此时 v = {\theta _{{\text{BR}}}} ,此时仅存在波束色散效应。当 P = 2 时,即 d = 2{\lambda _{\text{c}}}/2 ,得 v = \arcsin (\sin {\theta _{{\text{BR}}}} + m) ,根据选取 {\theta _{{\text{BR}}}} 不同, m 可取的值也有所不同。当 \sin{\theta _{{\text{BR}}}} \in (0,1] ,存在 m = 0 和 m = - 1 两个解, {v_1} = \arcsin (\sin {\theta _{{\text{BR}}}}) , {v_2} = \arcsin (\sin {\theta _{{\text{BR}}}} - 1) ,则 P = 2 时波束会分裂成两个角度。当 \sin {\theta _{{\text{BR}}}} = 0 时,解为 m = 0 , m = - 1 和 m = 1 ,此时波束会分裂成3个角度。因此,波束分裂不仅与分裂系数 P 有关,还与角度选取有关。
3. 基于TTD的RIS波束色散和分裂
本节分析不同RIS单元间距下基于TTD波束色散和分裂影响。如图6所示,每个RIS单元上连接一个TTD,TTD是频率相关的宽带器件,可通过改变信号的传播时延,来调整波束色散和分裂程度。
第r个RIS单元和TTD连接组合的时域响应为 {{\text{e}}^{{\text{j}}{\phi _r}}}\delta (t - {t_r}) ,{t_r}为第rTTD引入的延时,则对应的频域响应表示为{b_r} = {{\text{e}}^{{\text{j}}{\phi _r}}}{{\text{e}}^{{-\text{j}}2{\pi }f{t_r}}},相应频域响应矢量为{\boldsymbol{b}} = [{{\text{e}}^{{\text{j}}{\phi _1}}}{{\text{e}}^{{{ - {\mathrm{j}}}}2{\pi }f{t_1}}},\cdots,{{\text{e}}^{{\text{j}}{\phi _r}}}{{\text{e}}^{{{ - {\mathrm{j}}}}2{\pi }f{t_r}}},\cdots, {{\text{e}}^{{\text{j}}{\phi _R}}}{{\text{e}}^{{{ - {\mathrm{j}}}}2{\pi }f{t_R}}}]^{\text{T}}。由上文分析BS-RIS-目标级联信道响应式级联信道响应重新表述为
{\boldsymbol{h}}'(f) = \alpha {\boldsymbol{a}}(\varTheta (f)){{\text{e}}^{{{ - {\mathrm{j}}}}2{\pi }f{\tau _0}}} (13) 其中,{\boldsymbol{a}}(\varTheta (f)) = [1,{{\text{e}}^{{{ - {\mathrm{j}}2\pi }}\frac{d}{{{\lambda _{\text{c}}}}}v(2 + \frac{f}{{{f_{\text{c}}}}})}},\cdots , {{\text{e}}^{{{ - {\mathrm{j}}2\pi }}(R - 1)\frac{d}{{{\lambda _{\text{c}}}}}v(2 + \frac{f}{{{f_{\text{c}}}}})}}]^{\text{T}}。定义 \varTheta (f) = \phi (2 + \frac{f}{{{f_{\text{c}}}}}) , f \in [0,{f_{\text{s}}}{\text{]}} 。对于有 M 个子载波的正交频分复用 (Orthogonal Frequency Division Multiplexing, OFDM)系统子载波间距为{f_{\text{s}}}/M,则第 m 个子载波处的频率可以表示为{f_m} = m{f_{\text{s}}}/M。由频率响应矢量{\boldsymbol{b}}和空间转向向量 {\boldsymbol{a}}(\varTheta (f)) 表示的阵列增益为
\begin{split} g(f)\;& = \left| {{{\boldsymbol{a}}^{\text{T}}}(\varTheta (f)){\boldsymbol{b}}} \right| \\ & = \left| {\sum\limits_{r = 1}^R {{{\text{e}}^{{{ - {\mathrm{j}}2\pi }}\frac{d}{{{\lambda _{\text{c}}}}}(r - 1)(2 + \frac{f}{{{f_{\text{c}}}}})v}}} {{\text{e}}^{{\text{j}}{\phi _r}}}{{\text{e}}^{{{ - {\mathrm{j}}}}2{\pi }f{t_r}}}} \right| \end{split} (14) 3.1 基于TTD的RIS波束色散
首先仅考虑波束色散效应,通过设计TTD和RIS反射系数,可以调整波束色散程度。假设频率 f 从 0 变化到 {f_{\text{s}}} 时,相应波束角度从初始角度 {v_0} 变化到终止角度 {v_M} ,d = {\lambda _{\text{c}}}/2时的波束阵列增益可表示为
\begin{split} {g_1}(f) \;&= \left| {{{\boldsymbol{a}}^{\text{T}}}(\varTheta (f)){\boldsymbol{b}}} \right|\\ & = \left| {\sum\limits_{r = 1}^R {{{\text{e}}^{{{ - {\mathrm{j}}\pi }}(r - 1)(2 + \frac{f}{{{f_{\text{c}}}}})v}}} {{\text{e}}^{{\text{j}}{\phi _r}}}{{\text{e}}^{{{ - {\mathrm{j}}2\pi }}f{t_r}}}} \right| \end{split} (15) 定义{\text{s}}{{\text{v}}_0} = \sin ({\theta _{{\text{BR}}}}) - \sin ({\theta _{{v_{\text{0}}}}})为等效初始角, {\text{s}}{{\text{v}}_M} = \sin ({\theta _{{\text{BR}}}}) - \sin ({\theta _{{v_{_M}}}}) 为等效终止角。当 f = 0 时, v = {\text{s}}{{\text{v}}_0} , 最大化{g_{\text{1}}}(0) = \left| {\displaystyle\sum\nolimits_{r = 1}^R {{{\text{e}}^{{{ - {\rm j}\pi }}(r - 1)2{\text{s}}{{\text{v}}_0}}}} {{\text{e}}^{{\text{j}}{\phi _r}}}} \right|,可得 {\phi _1}_r = {\pi }(r - 1)2{\text{s}}{{\text{v}}_0} 。当 f = {f_{\text{s}}} 时, v = {\text{s}}{{\text{v}}_M} ,波束增益表示为 {g_{\text{1}}}({f_{\text{s}}}) = \left| {\displaystyle\sum\nolimits_{r = 1}^R {{{\text{e}}^{{{ - {\rm j}\pi }}(r - 1)(2 + \frac{{{f_{\text{s}}}}}{{{f_{\text{c}}}}}){\text{s}}{{\text{v}}_M}}}} {{\text{e}}^{{{{\mathrm{j}}\pi }}(r - 1)2{\text{s}}{{\text{v}}_0}}}{{\text{e}}^{{{ -{\mathrm{ j}}2\pi }}{f_{\text{s}}}{t_r}}}} \right| 。 最大化增益可得{t_1}_r = \dfrac{{(r - 1)[2{\text{s}}{{\text{v}}_0} - (2 + \dfrac{{{f_{\text{s}}}}}{{{f_{\mathrm{c}}}}}){\text{s}}{{\text{v}}_{_M}}]}}{{2{f_{\text{s}}}}},则{\text{s}}{{\text{v}}_{\text{1}}}_f = \left(\frac{{2{\text{s}}{{\text{v}}_0} - f\dfrac{{[2{\text{s}}{{\text{v}}_0} - (2 + \dfrac{{{f_{\text{s}}}}}{{{f_{\text{c}}}}}){\text{s}}{{\text{v}}_M}]}}{{{f_{\text{s}}}}}}}{{2 + \dfrac{f}{{{f_{\text{c}}}}}}}\right)。因此,任意频率 f 处波束角度{\theta _f}可表示为{\theta _f} = \arcsin (\sin ({\theta _{{\text{BR}}}}) - {\text{s}}{{\text{v}}_1}_f)。基于TTD波束色散的波束图样如图7所示。
3.2 基于TTD的联合波束色散和分裂
由2.1分析可知,波束色散程度与TTD取值有关。当TTD取值固定,波束范围是不可调的。为了解决上述问题,考虑联合利用波束色散和分裂,在载波数目一定情况下,将感知区域分为多个子区域,每个子区域通过波束色散覆盖,不同子区域可以利用波束分裂覆盖。而为了利用波束分裂效应,假设RIS元件d = P{\lambda _{\text{c}}}/2,可以通过选择图5所示的子阵列来实现。同样,假设频率 f 从 0 变化到 {f_{\text{s}}} 时,相应波束角度从初始角度 {v_0} 变化到终止角度 {v_M} 。d = P{\lambda _{\mathrm{c}}}/2时的阵列增益为
\begin{split} {g_2}(f) \;&= \left| {{{\boldsymbol{a}}^{\text{T}}}(\varTheta (f)){\boldsymbol{b}}} \right| \\ & = \left| {\sum\limits_{r = 1}^R {{{\text{e}}^{{{ - {\rm j}\pi }}(r - 1)(2 + \frac{f}{{{f_{\text{c}}}}})Pv}}} {{\text{e}}^{{\mathrm{j}}{\phi _r}}}{{\text{e}}^{{{ - {\mathrm{j}}2\pi }}f{t_r}}}} \right| \end{split} (16) 定义{\text{s}}{{\text{v}}_0} = \sin ({\theta _{{\text{BR}}}}) - \sin ({\theta _{{v_{\text{0}}}}})表示等效初始角{\text{s}}{{\text{v}}_M} = \sin ({\theta _{{\text{BR}}}}) - \sin ({\theta _{{v_{_M}}}})表示等效终止角。当 f = 0 时, v = {\text{s}}{{\text{v}}_0} ,最大化{g_{\text{2}}}(0) = \left| {\displaystyle\sum\nolimits_{r = 1}^R {{{\text{e}}^{{{ - {\rm j}\pi }}(r - 1)2P{\text{s}}{{\text{v}}_0}}}} {{\text{e}}^{{\text{j}}{\phi _r}}}} \right|,得出反射系数 {\phi _{{\text{2}}r}} = P{\pi }(r - 1)2{\text{s}}{{\text{v}}_0} 。此时,将 f = {f_{\text{s}}} 和 v = {\text{s}}{{\text{v}}_M} 代入式(16)得{g_{\text{2}}}({f_{\text{s}}}) = \left| {\displaystyle\sum\nolimits_{r = 1}^R {{{\text{e}}^{{{ - {\rm j}\pi }}(r - 1)(2 + \frac{{{f_{\text{s}}}}}{{{f_{\text{c}}}}})P{\text{s}}{{\text{v}}_M}}}} {{\text{e}}^{{\text{j}}P{\pi }(r - 1)2{\text{s}}{{\text{v}}_0}}}{{\text{e}}^{{{ - {\mathrm{j}}}}2{\pi }{f_{\text{s}}}{t_r}}}} \right| ,为最大值增益可取{t_{{\text{2}}r}} = ({{P(r - 1)[2{\text{s}}{{\text{v}}_0} - (2 + \dfrac{{{f_{\text{s}}}}}{{{f_{\text{c}}}}}){\text{s}}{{\text{v}}_{_M}}]}})/ {{2{f_{\text{s}}}}}。任意频率 f 处波束角度可表示为{\text{s}}{{\text{v}}_{2f}} = \left(\frac{{2{\text{s}}{{\text{v}}_0} - f\dfrac{{[2{\text{s}}{{\text{v}}_0} - (2 + \dfrac{{{f_{\text{s}}}}}{{{f_{\text{c}}}}}){\text{s}}{{\text{v}}_M}]}}{{{f_{\text{s}}}}}}}{{2 + \dfrac{f}{{{f_{\text{c}}}}}}}\right),则{\text{sin}}{\theta _f} = \sin ({\theta _{{\text{BR}}}}) - {\text{s}}{{\text{v}}_{{\text{2}}f}}。下文分别用v_{\text{0}}^{\mathrm{s}}, v_f^{\mathrm{s}}, v_M^{\mathrm{s}}表示 {v_0} , {v_f} 和 {v_M} 的分裂角,则{\text{s}}{\text{v}}_{2f}^{\mathrm{s}} = \frac{{2{\text{s}}{\text{v}}_0^{\mathrm{s}} - f\dfrac{{{\lambda _{\text{c}}}}}{d}\dfrac{{{t_{{\text{2}}r}}}}{{r - 1}}}}{{2 + \dfrac{f}{{{f_{\text{c}}}}}}}, {\text{sin}}\theta _f^{\mathrm{s}} = \sin ({\theta _{{\text{BR}}}}) - {\text{s}}{\text{v}}_{2f}^s。
图2与图7分别为在同一带宽,同一载波数目条件下在RIS元件上未部署TTD和部署TTD时的波束图样,由图对比可知,TTD可以灵活调整波束色散程度。图8为 d = 2{\lambda _{\text{c}}}/2 时,联合RIS波束色散和分裂的波束图样和归一化增益图。其中, {f_i} \in \{ t,u,v,k\} 表示第 i 个载波处的频率值,图8中相同颜色表示同一频率波束,可以看出明显扩大了波束覆盖区域,并划分成为若干个子区域。可以看出,虽然利用TTD调整波束色散和分裂可以将波束覆盖区域分割为多个子区域,使感知范围更加灵活。但是,相邻波束之间有较大空隙,在感知时仍然需要多次扫描才能实现整个区域的全覆盖,这可能会失去利用波束色散和波束分裂进行感知的优势。所以,考虑在保证波束覆盖区域范围和子区域之间不重叠的情况下,调整TTD值缩小相邻波束范围之间的空隙。
由2.1, 2.2节分析可知,TTD取值仅与给定初始角和终止角有关,而初始角和终止角在波束色散和波束分裂中未发生改变,将出现如图8所示结果。通过联合调整波束色散和波束分裂的终止角,实现所有波束覆盖的子区域几乎无缝连接。为了与上述加TTD分析方法区别,将上述TTD分析方法简称为时延感知(Time Delay Sensing,TDS),而下文中调整终止角度TTD感知简称为可变时延感知(Available Time Delay Sensing,ATDS),波束图样如图9所示,具体分析方法如下。
假设给定波束角度范围为 {v_{\text{0}}} \sim {v_M} ,初始角度 {v_{\text{0}}} 固定,可以计算出在P给定条件下 {v_{\text{0}}} 的分裂角 v_{\text{0}}^{\mathrm{s}} ,选取 v_{\text{0}}^{\mathrm{s}} (当 v_{\text{0}}^{\mathrm{s}} 有多个时,选取距离 {v_{\text{0}}} 较近的分裂角作为 v_{\text{0}}^{\mathrm{s}} )作为波束分裂的终止角,记为 v_{_M}^{'} ,即等效终止角为{\text{sv}}_M^{'} = \sin ({\theta _{{\text{BR}}}}) - \sin ({\theta _{v_M^{'}}}),则时延值和波束方向关系式可重新表述为{t_{{\text{3}}r}} = ({P(r - 1) [2{\text{s}}{{\text{v}}_0} - (2 + \dfrac{{{f_{\text{s}}}}}{{{f_{\text{c}}}}}){\text{sv}}_M^{'}]})/{{{\text{2}}{f_{\text{s}}}}}, {\text{s}}{{\text{v}}_{3f}} = ({{2{\text{s}}{{\text{v}}_0} - f\dfrac{{[2{\text{s}}{{\text{v}}_0} - (2 + \dfrac{{{f_{\text{s}}}}}{{{f_{\text{c}}}}}){\text{sv}}_M^{'}]}}{{{f_{\text{s}}}}}}})/ {{2 + {f}/{{{f_{\text{c}}}}}}} 。图8与图9中的波束图样对比可明显看出,基于ATDS方法可以在保证覆盖范围的基础上,使得多载波波束均匀覆盖感知区域。
4. 回波分析以及目标角度估计
本节分析在RIS-SE处接收到的回波表示为:{{\boldsymbol{y}}_{\text{s}}} = {{\boldsymbol{H}}_{\text{t}}}^{\text{H}}{\boldsymbol{\varPhi G}}s + n,{{\boldsymbol{H}}_{\text{t}}} \in {R_{\text{s}}} \times R为RIS-RE-目标-RIS-SE链路上的信道矩阵,表示为 {{\boldsymbol{H}}_{\text{t}}} = {\alpha _{\text{s}}}{{\boldsymbol{a}}_{{R_{\text{s}}}}}{\mathbf{(}}{\theta _{{\text{RT}}}}{\mathbf{)}}\cdot {\boldsymbol{a}}_R^{\text{H}}{\mathbf{(}}{\theta _{{\text{RT}}}}{\mathbf{)}} ,{\boldsymbol{G}} \in R \times 1为BS-RIS-RE链路上的信道转向矢量,表示为 {\boldsymbol{G}} = {\alpha _{\text{g}}}{\boldsymbol{a}}_R^{\text{H}}{\mathbf{(}}{\theta _{{\text{BR}}}}{\mathbf{)}} 。{\theta _{{\text{BR}}}}, {\theta _{{\text{RT}}}}, {\alpha _{\text{g}}}, {\alpha _{\text{s}}}分别表示AoA, AoD, BS-RIS链路上等效基带复增益、RIS-RE-目标-RIS-SE链路上等效基带复增益。为便于对RIS-SE处收集回波信号进行分析,假设感知信号 s = 1 [15]。{{\boldsymbol{a}}_R}( \cdot )表示与RIS相关的阵列响应向量,具体表达式如 {{\boldsymbol{a}}_R}{\mathbf{(}}\theta {\mathbf{)}} = \dfrac{1}{{\sqrt R }}[1,\cdots, {{\text{e}}^{{{{\mathrm{j}}2\pi }}d\frac{f}{{\mathrm{c}}}(r - 1)\sin \theta }},\cdots,{{\text{e}}^{{{{\mathrm{j}}2\pi }}d\frac{f}{{\mathrm{c}}}(R - 1)\sin \theta }}]^{\text{T}} 。RIS-SE处接收到的回波信号可重新表述为
\begin{split} {{\boldsymbol{y}}_{\text{s}}} \;& = {\alpha _{\text{s}}}{\alpha _{\text{g}}}{{\boldsymbol{a}}_{{R_{\text{s}}}}}({\theta _{{\text{RT}}}}){\boldsymbol{a}}_R^{\text{H}}({\theta _{{\text{RT}}}}){\mathrm{diag}}({\boldsymbol{\theta}} ){{\boldsymbol{a}}_R}({\theta _{{\text{BR}}}}) + {\boldsymbol{n}} \\ & = {\alpha _{\text{s}}}{\alpha _{\text{g}}}{{\boldsymbol{a}}_{{R_{\text{s}}}}}({\theta _{{\text{RT}}}})({\boldsymbol{a}}_R^{\text{T}}( {{\bar\theta _{{\text{RT}}}}} ){\boldsymbol{\theta}} ) + {\boldsymbol{n}}\\[-1pt] \end{split} (17) 其中, {{\bar\theta _{{\text{RT}}}}} = \arcsin (\sin ({\theta _{{\text{BR}}}}) - \sin ({\theta _{{\text{RT}}}})), {\alpha _{\text{g}}}为BS-RIS-RE链路上等效基带复增益。将{{\boldsymbol{y}}_{\text{s}}}记作基准向量。通过接收回波估计目标方向的具体过程为
{\boldsymbol{y}}_{\text{s}}^f = {\alpha _{\text{s}}}{\alpha _{\text{g}}}{{\boldsymbol{a}}_{{R_{\text{s}}}}}{\mathbf{(}}{\theta _f}{\text{)}}({{\boldsymbol{a}}_R}^{\text{T}}{\mathbf{(}} {{\bar\theta _f}} {\mathbf{)}}{\boldsymbol{\theta}} ) + {\boldsymbol{n}} (18) 其中, {{\bar\theta _f}} = \arcsin (\sin ({\theta _{{\text{BR}}}}) - \sin ({\theta _f})),{\theta _f}为RIS与频率f处波束之间的角度。将各个频率处的{\boldsymbol{y}}_{\text{s}}^f与基准向量{{\boldsymbol{y}}_{\text{s}}}进行互相关运算,取相关系数最大值时 {\boldsymbol{y}}_{\text{s}}^f 中的{\theta _f}记为目标所在方向的估计值{\tilde \theta _{{\text{RT}}}},最终通过计算真实值与估计值之间的RMSE衡量角度估计的准确性。目标角度估计值表示为 {\tilde \theta _{{\text{RT}}}} = \mathop {\arg \max }\limits_{{\theta _f}} \left| {{\mathrm{Corr}}({{\boldsymbol{y}}_{\text{s}}},{\boldsymbol{y}}_{\text{s}}^f)} \right| 。相关系数定义为
{\mathrm{Corr}}({{\boldsymbol{y}}_{\text{s}}},{\boldsymbol{y}}_{\text{s}}^f) = \frac{{{\mathrm{Cov}}({{\boldsymbol{y}}_{\text{s}}},{\boldsymbol{y}}_{\text{s}}^f)}}{{\sqrt {{\mathrm{Var}}({{\boldsymbol{y}}_{\text{s}}})} \sqrt {{\mathrm{Var}}({\boldsymbol{y}}_{\text{s}}^f)} }} = \frac{{Cov({{\boldsymbol{y}}_{\text{s}}},{\boldsymbol{y}}_{\text{s}}^f)}}{{{\sigma _{{{\boldsymbol{y}}_{\text{s}}}}}{\sigma _{{\boldsymbol{y}}_{\text{s}}^f}}}} (19) 其中, {\mathrm{Cov}}({{\boldsymbol{y}}_{\text{s}}},{\boldsymbol{y}}_{\text{s}}^f) 表示向量 {{\boldsymbol{y}}_{\text{s}}} 和向量 {\boldsymbol{y}}_{\text{s}}^f 的协方差, {\mathrm{Var}}({{\boldsymbol{y}}_{\text{s}}}) , {\mathrm{Var}}({\boldsymbol{y}}_{\text{s}}^f) 分别为向量 {{\boldsymbol{y}}_{\text{s}}} ,向量 {\boldsymbol{y}}_{\text{s}}^f 的方差。{\text{RMSE}} = \sqrt {{\rm E}[{{({\theta _{{\text{RT}}}} - {{\tilde \theta }_{{\text{RT}}}})}^2}]} 表示估计值与真实值之间的平均偏差程度。
5. 仿真结果分析
本节通过实验仿真说明利用波束色散和分裂进行感知目标的可行性以及有效性。载波频率中心频率 {f_{\text{c}}} = 300 GHz,带宽 {f_{\text{s}}} = 6 GHz, RIS-RE元件数 R = 64 ,RIS-SE元件数 {R_{\text{s}}} = 32 ,BS与RIS之间的角度 {\theta _{{\text{BR}}}} = - {30^ \circ } 。
图10中3条曲线在同一波束色散范围进行比较,其中选取的目标方向不同,分别在 [{0^ \circ },{20^ \circ }] , [{40^ \circ },{60^ \circ }] , [{60^ \circ },{80^ \circ }] 范围进行随机取值。由图10可以看出,随着载波数目增加,感知误差减小,感知精度随之增加。此外,在载波数目相同情况下,由于目标选取的不同,感知误差也会有差异。可见,尽管该方法采用OFDM均匀间隔子载波,但是感知范围在每个子载波处并不是均匀分布,由波束图样也可观察到此现象。主要原因为载波波束形成角度是关于载波频率 f 的非线性反正弦函数。因此,仿真结果表明AoD在 [{0^ \circ },{20^ \circ }] 内的性能要优于在 [{60^ \circ },{80^ \circ }] ,说明在 [{0^ \circ },{20^ \circ }] 范围内波束角度分布更加线性和均匀,感知精度更高。
图11分别表示在d = P{\lambda _{\text{c}}}/2条件下,即 P = 1 , P = 3 , P = 5 下联合RIS波束色散和分裂下RMSE与载波数目之间的关系图。联合波束色散和分裂感知方法下,RMSE随着载波数目增加而减小,感知精度随着载波数目增加而增加。此外,在载波数目一定的情况下,增大分裂系数 P ,分割的感知区域越多,感知精度越高。但是, P 值不能过大,过大会造成波束范围发生重叠,使得感知模糊,产生较大的感知误差。
6. 结束语
本文研究了RIS辅助太赫兹系统中的波束色散和波束分裂问题,并提出了一种联合波束色散和分裂的快速感知方法。具体而言,利用TTD在波束色散基础上调整子载波波束方向。此外,为扩大感知区域,联合波束色散和分裂效应,将感知区域分为多个子区域,并同时被一个OFDM块内的分散波束所覆盖。最后,根据在RIS-SE处接收的回波信号估计目标方向,用真实值与估计值的RMSE衡量感知误差。仿真结果表明所提出的快速感知方法可行性和有效性。然而,研究可知,波束色散效应对于通信过程来说,会严重影响波束增益,降低通信性能;对于感知过程来说,则扩大波束覆盖范围,有利于感知。因此,对于通感一体化系统来说,需要分阶段考虑波束色散效应产生的影响,如何更好提升通感一体化系统性能这将作为我们下一步研究的工作。
-
[1] RAPPAPORT T S, XING Yunchou, KANHERE O, et al. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond[J]. IEEE Access, 2019, 7: 78729–78757. doi: 10.1109/ACCESS.2019.2921522. [2] XUE Qing, JI Chengwang, MA Shaodan, et al. A survey of beam management for mmWave and THz communications towards 6G[J]. IEEE Communications Surveys & Tutorials, 2024, 26(3): 1520–1559. doi: 10.1109/COMST.2024.3361991. [3] SU Xin, HE Ruisi, ZHANG Peng, et al. Joint precoding for RIS-assisted wideband THz cell-free massive MIMO systems[J]. IEEE Internet of Things Journal, 2024, 11(20): 33361–33370. doi: 10.1109/JIOT.2024.3426937. [4] WU Qingqing, ZHANG Shuowen, ZHENG Beixiong, et al. Intelligent reflecting surface-aided wireless communications: A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313–3351. doi: 10.1109/TCOMM.2021.3051897. [5] HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609. [6] YAN Wencai, HAO Wanming, HUANG Chongwen, et al. Beamforming analysis and design for wideband THz reconfigurable intelligent surface communications[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(8): 2306–2320. doi: 10.1109/JSAC.2023.3288235. [7] LI Jinyang, ZHANG Shun, LI Zan, et al. User sensing in RIS-aided wideband mmWave system with beam-squint and beam-split[J]. IEEE Transactions on Communications, 2025, 73(2): 1304–1319. doi: 10.1109/TCOMM.2024.3439445. [8] HAO Wanming, YOU Xiaobei, ZHOU Fuhui, et al. The far-/near-field beam squint and solutions for THz intelligent reflecting surface communications[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 10107–10118. doi: 10.1109/TVT.2023.3254153. [9] ELBIR A M, SHI Wei, PAPAZAFEIROPOULOS A K, et al. Terahertz-band channel and beam split estimation via array perturbation model[J]. IEEE Open Journal of the communications society, 2023, 4: 892–907. doi: 10.1109/OJCOMS.2023.3263625. [10] 郝万明, 尤晓蓓, 孙钢灿, 等. 超宽带太赫兹通信中天线结构设计及其波束色散影响分析[J]. 电子与信息学报, 2023, 45(1): 200–207. doi: 10.11999/JEIT211290.HAO Wanming, YOU Xiaobei, SUN Gangcan, et al. Design of antenna structure and analysis of beam split effect in ultra-band width terahertz communications[J]. Journal of Electronics & Information Technology, 2023, 45(1): 200–207. doi: 10.11999/JEIT211290. [11] ZHAI Bangzhao, ZHU Yilun, TANG Aimin, et al. THzPrism: Frequency-based beam spreading for terahertz communication systems[J]. IEEE Wireless Communications Letters, 2020, 9(6): 897–900. doi: 10.1109/LWC.2020.2974468. [12] TAN Jinbo and DAI Linglong. Wideband beam tracking based on beam zooming for THz massive MIMO[C]. GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–6. doi: 10.1109/GLOBECOM42002.2020.9348222. [13] GAO Feifei, XU Liangyuan, and MA Shaodan. Integrated sensing and communications with joint beam-squint and beam-split for mmWave/THz massive MIMO[J]. IEEE Transactions on Communications, 2023, 71(5): 2963–2976. doi: 10.1109/TCOMM.2023.3252584. [14] CAI Wenhao, LI Hongyu, LI Ming, et al. Practical modeling and beamforming for intelligent reflecting surface aided wideband systems[J]. IEEE Communications Letters, 2020, 24(7): 1568–1571. doi: 10.1109/LCOMM.2020.2987322. [15] LI Renwang, SHAO Xiaodan, SUN Shu, et al. Beam scanning for integrated sensing and communication in IRS-aided mmWave systems[C]. 2023 IEEE 24th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Shanghai, China, 2023: 196–200. doi: 10.1109/SPAWC53906.2023.10304548. -