高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DroneRFb-DIR: 用于非合作无人机个体识别的射频信号数据集

任俊宇 俞宁宁 周成伟 史治国 陈积明

任俊宇, 俞宁宁, 周成伟, 史治国, 陈积明. DroneRFb-DIR: 用于非合作无人机个体识别的射频信号数据集[J]. 电子与信息学报, 2025, 47(3): 573-581. doi: 10.11999/JEIT240804
引用本文: 任俊宇, 俞宁宁, 周成伟, 史治国, 陈积明. DroneRFb-DIR: 用于非合作无人机个体识别的射频信号数据集[J]. 电子与信息学报, 2025, 47(3): 573-581. doi: 10.11999/JEIT240804
REN Junyu, YU Ningning, ZHOU Chengwei, SHI Zhiguo, CHEN Jiming. DroneRFb-DIR: An RF Signal Dataset for Non-cooperative Drone Individual Identification[J]. Journal of Electronics & Information Technology, 2025, 47(3): 573-581. doi: 10.11999/JEIT240804
Citation: REN Junyu, YU Ningning, ZHOU Chengwei, SHI Zhiguo, CHEN Jiming. DroneRFb-DIR: An RF Signal Dataset for Non-cooperative Drone Individual Identification[J]. Journal of Electronics & Information Technology, 2025, 47(3): 573-581. doi: 10.11999/JEIT240804

DroneRFb-DIR: 用于非合作无人机个体识别的射频信号数据集

doi: 10.11999/JEIT240804
基金项目: 国家自然科学基金(U21A20456, 62271444),中央高校基本科研业务费(226-2023-00111, 226-2024-00004)
详细信息
    作者简介:

    任俊宇:男,博士生,研究方向为反无人机检测识别、信号估计等

    俞宁宁:男,博士生,研究方向为反无人机检测、电磁频谱认知、信号识别等

    周成伟:男,博士,研究员,研究方向为阵列信号处理、张量信号处理、无人机智能监测技术等

    史治国:男,博士,教授,研究方向为信号处理及其定位应用、物联网等

    陈积明:男,博士,教授,研究方向为网络优化与控制、网络系统安全、工业大数据与物联网等

    通讯作者:

    史治国 shizg@zju.edu.cn

  • 中图分类号: TN975

DroneRFb-DIR: An RF Signal Dataset for Non-cooperative Drone Individual Identification

Funds: The National Natural Science Foundation of China (U21A20456, 62271444), The Fundamental Research Funds for Central Universities (226-2023-00111, 226-2024-00004)
  • 摘要: 无人机射频检测是实现非合作无人机管控的手段之一,而基于射频信号的无人机个体识别(DIR)是无人机检测的重要环节。鉴于当前DIR开源数据集缺失,该文公开了一个名为DroneRFb-DIR的无人机射频信号数据集。该数据集使用软件无线电设备采集无人机与遥控器间通信的射频信号,包含城市场景下的无人机种类共6类(每类无人机各包含3架不同个体)以及1类背景参考信号。采样信号存储为最原始的I/Q数据,每类数据包含不少于40个片段,每个片段包含不少于4 M个采样点。信号采集范围为2.4~2.48 GHz,包含无人机飞控信号、图传信号以及周围干扰设备的信号。该数据集包含详细的个体编号和视距或非视距场景标注,并已划分训练集与测试集,以便于用户进行识别算法验证和性能对比分析。与此同时,该文提供了一种基于快速频率估计和时域相关分析的无人机个体识别方法,并在该数据集上验证了所提方法的有效性。
  • 图  1  数据采集场景

    图  2  DJI Mavic 3 Pro无人机信号时频图

    图  3  无人机图传(红色实线框)与飞控信号(蓝色实线框)特征示意

    图  4  宽带信号的检出流程

    图  5  DJI Mavic 3 Pro的无人机飞控信号时频图

    图  6  相邻两个时间窗FFT谱图

    图  7  无人机飞控信号组成

    图  8  无人机个体飞控信号相关性曲线

    表  1  无人机探测手段特点

    探测手段最大有效距离(m)原理缺点
    雷达8000微多普勒无人机雷达截面积小,成本高,不适合城市场景
    音频200时频特征覆盖范围小,受噪声影响大
    视觉1500外观特征和运动特征受遮挡、天气环境影响大
    射频5000通信信道易受城市环境下干扰信号影响
    下载: 导出CSV

    表  2  个体标签与型号对应关系

    个体标签 型号
    A1, A2, A3 DJI Mavic 3 Pro
    B 背景
    C1, C2, C3 DJI Mini 2 SE
    D1, D2, D3 DJI Mini 4 Pro
    E1, E2, E3 DJI Mini 3
    F1, F2, F3 DJI Air 3
    G1, G2, G3 DJI Air 2S
    下载: 导出CSV

    表  3  无人机个体识别结果

    种类标签识别率(%)
    A63.96
    B100.00
    C60.74
    D29.63
    E68.62
    F37.50
    G67.95
    下载: 导出CSV
  • [1] SHI Xiufang, YANG Chaoqun, XIE Weige, et al. Anti-drone system with multiple surveillance technologies: Architecture, implementation, and challenges[J]. IEEE Communications Magazine, 2018, 56(4): 68–74. doi: 10.1109/MCOM.2018.1700430.
    [2] 陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.

    CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.
    [3] KAUFMANN E, BAUERSFELD L, LOQUERCIO A, et al. Champion-level drone racing using deep reinforcement learning[J]. Nature, 2023, 620(7976): 982–987. doi: 10.1038/s41586-023-06419-4.
    [4] KUNERTOVA D. The war in Ukraine shows the game-changing effect of drones depends on the game[J]. Bulletin of the Atomic Scientists, 2023, 79(2): 95–102. doi: 10.1080/00963402.2023.2178180.
    [5] 国务院, 中央军委. 无人驾驶航空器飞行管理暂行条例[EB/OL]. https://www.gov.cn/zhengce/content/202306/content_6888799.htm, 2023.

    The State Council of the People’s Republic of China, The Central Military Commission of the Communist Party of China. Interim regulations on the management of unmanned aircraft flights[EB/OL]. https://www.gov.cn/zhengce/content/202306/content_6888799.htm, 2023.
    [6] 聂伟, 戴琪霏, 杨小龙, 等. 基于多维信号特征的无人机探测识别方法[J]. 电子与信息学报, 2024, 46(3): 1089–1099. doi: 10.11999/JEIT230302.

    NIE Wei, DAI Qifei, YANG Xiaolong, et al. Unmanned aerial vehicle detection and recognition method based on multi-dimensional signal feature[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1089–1099. doi: 10.11999/JEIT230302.
    [7] SHI Zhiguo, CHANG Xianyu, YANG Chaoqun, et al. An acoustic-based surveillance system for amateur drones detection and localization[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 2731–2739. doi: 10.1109/TVT.2020.2964110.
    [8] SI Zheng, LIU Chao, LIU Jianyu, et al. Application of SNNS model based on multi-dimensional attention in drone radio frequency signal classification[C].2024 IEEE International Conference on Acoustics, Speech and Signal Processing, Seoul, Republic of Korea, 2024: 231–235. doi: 10.1109/ICASSP48485.2024.10446694.
    [9] GLÜGE S, NYFELER M, AGHAEBRAHIMIAN A, et al. Robust low-cost drone detection and classification using convolutional neural networks in low SNR environments[J]. IEEE Journal of Radio Frequency Identification, 2024, 8: 821–830. doi: 10.1109/JRFID.2024.3487303.
    [10] 俞宁宁, 毛盛健, 周成伟, 等. DroneRFa: 用于侦测低空无人机的大规模无人机射频信号数据集[J]. 电子与信息学报, 2024, 46(4): 1147–1156. doi: 10.11999/JEIT230570.

    YU Ningning, MAO Shengjian, ZHOU Chengwei, et al. DroneRFa: A large-scale dataset of drone radio frequency signals for detecting low-altitude drones[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1147–1156. doi: 10.11999/JEIT230570.
    [11] YU Ningning, WU Jiajun, ZHOU Chengwei, et al. Open set learning for RF-based drone recognition via signal semantics[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 9894–9909. doi: 10.1109/TIFS.2024.3463535.
    [12] 彭鸿飞, 朱鑫潮, 周成伟, 等. 基于静动态综合估计的无人机蜂群态势感知技术[J]. 信号处理, 2024, 40(5): 826–838. doi: 10.16798/j.issn.1003-0530.2024.05.003.

    PENG Hongfei, ZHU Xinchao, ZHOU Chengwei, et al. UAV swarm situational awareness technology based on static and dynamic comprehensive estimations[J]. Journal of Signal Processing, 2024, 40(5): 826–838. doi: 10.16798/j.issn.1003-0530.2024.05.003.
    [13] ZHOU Chengwei, GU Yujie, SHI Zhiguo, et al. Structured nyquist correlation reconstruction for DOA estimation with sparse arrays[J]. IEEE Transactions on Signal Processing, 2023, 71: 1849–1862. doi: 10.1109/TSP.2023.3251110.
    [14] ZHENG Hang, ZHOU Chengwei, SHI Zhiguo, et al. Coarray tensor direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2023, 71: 1128–1142. doi: 10.1109/TSP.2023.3260559.
    [15] 郑航, 周成伟, 王勇, 等. EMVS互质面阵张量波束成形[J]. 信号处理, 2024, 40(2): 250–262. doi: 10.16798/j.issn.1003-0530.2024.02.003.

    ZHENG Hang, ZHOU Chengwei, WANG Yong, et al. Tensor beamforming for EMVS coprime planar array[J]. Journal of Signal Processing, 2024, 40(2): 250–262. doi: 10.16798/j.issn.1003-0530.2024.02.003.
    [16] WANG Qiexiang, WANG Longhui, YU Lebin, et al. An ID-based robust identification approach toward multitype noncooperative drones[J]. IEEE Sensors Journal, 2023, 23(9): 10179–10192. doi: 10.1109/JSEN.2023.3259203.
    [17] ZHAO Zheng, SÄRKKÄ S, SJÖLUND J, et al. Probabilistic estimation of instantaneous frequencies of chirp signals[J]. IEEE Transactions on Signal Processing, 2023, 71: 461–476. doi: 10.1109/TSP.2023.3245720.
    [18] KHODARAHMI M and MAIHAMI V. A review on Kalman filter models[J]. Archives of Computational Methods in Engineering, 2023, 30(1): 727–747. doi: 10.1007/s11831-022-09815-7.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  729
  • HTML全文浏览量:  191
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-19
  • 修回日期:  2025-02-21
  • 网络出版日期:  2025-02-26
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回