摘要: 针对网络有限测量资源与多样化测量需求之间矛盾日趋凸显的问题,该文在可重构的网络测量模型基础上,对网络测量任务部署问题进行建模,并提出一种测量任务部署算法。该算法利用测量构件复用及组合原理,高效利用网络测量资源,从而支持对多样化并发测量任务的部署。仿真实验数据显示,算法在任务部署成功率和任务部署时间性能指标上较GCTS (Task-execution Scheduling schemes based on Graph Coloring)算法均得到显著提高,任务部署成功率不低于90%。
摘要: 针对固定步长LMS(Least Mean Square)算法(FXSSLMS)不能同时满足快速收敛和小稳态失调误差的问题,该文提出了迭代变步长LMS算法(IVSSLMS)。与已有的变步长LMS算法(VSSLMS)不同,该算法的步长因子不再是由输出误差信号控制,而是建立了与迭代时间的改进Logistic函数非线性关系,克服了定步长算法收敛慢及已有变步长算法抗噪声干扰能力差的问题。最后从理论上分析了算法的性能,给出了其参数取值方法。理论分析和仿真均表明,所提算法能够在快速收敛情况下获得小的稳态失调误差,在有色噪声干扰下稳态失调误差比已有算法降低了约7 dB。
摘要: 为了有效辅助跳频(FH)网台分选和信号识别、跟踪,该文用正交偶极子对构造极化敏感阵列,基于空间极化时频分析,在欠定条件下实现了多跳频信号波达方向(Direction Of Arrival, DOA)与极化状态的高效联合估计。首先建立跳频信号的极化敏感阵列观察模型,然后根据参考阵元时频分析结果建立各跳信号的空间极化时频分布矩阵,再利用该矩阵中蕴含的信号极化-空域特征信息分别运用线性、二次型空间极化时频以及多项式求根共3种方法实现DOA与极化参数联合估计,最后蒙特卡罗仿真结果验证了该算法的有效性。