高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相位响应固定幅度响应约束的稳健波束形成方法

虞泓波 冯大政 解虎

虞泓波, 冯大政, 解虎. 相位响应固定幅度响应约束的稳健波束形成方法[J]. 电子与信息学报, 2015, 37(7): 1688-1694. doi: 10.11999/JEIT141513
引用本文: 虞泓波, 冯大政, 解虎. 相位响应固定幅度响应约束的稳健波束形成方法[J]. 电子与信息学报, 2015, 37(7): 1688-1694. doi: 10.11999/JEIT141513
Yu Hong-bo, Feng Da-zheng, Xie Hu. Robust Beamforming with Phase Response Fixed and Magnitude Response Constraint[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1688-1694. doi: 10.11999/JEIT141513
Citation: Yu Hong-bo, Feng Da-zheng, Xie Hu. Robust Beamforming with Phase Response Fixed and Magnitude Response Constraint[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1688-1694. doi: 10.11999/JEIT141513

相位响应固定幅度响应约束的稳健波束形成方法

doi: 10.11999/JEIT141513
基金项目: 

国家自然科学基金(61271293)资助课题

Robust Beamforming with Phase Response Fixed and Magnitude Response Constraint

  • 摘要: 传统的幅度约束波束形成器是一个非凸问题,需将原始模型化为线性规划进行间接求解。该文针对均匀线阵提出一种相位响应固定幅度响应约束(PFMC)的稳健波束形成方法。利用权矢量逆序列对应的传递函数与阵列响应函数只差一个相位因子这一性质,将阵列响应的相位设置为固定的线性相位,仅对阵列响应的实数幅度进行约束,从而得到一个凸的代价函数,最优权矢量可以利用内点法求出。同时考虑到协方差矩阵误差,利用最坏(WC)情况性能最优原理提出PFMC-WC算法改善PFMC的性能。与传统幅度约束波束形成器相比,减少了约束个数并省掉了恢复权矢量过程,从而降低了计算量。此外,由于相位响应得到保证,该文算法相对于传统算法具有更好的性能。仿真实验验证了该文算法的有效性。
  • Van Trees H L. Detection, Estimation, and Modulation Theory, Part IV: Optimum Array Processing[M]. New York: Wiley, 2002: 439-452.
    Vorobyov S A, Gershman A B, and Luo Z Q. Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem[J]. IEEE Transactions on Signal Processing, 2003, 51(2): 313-324.
    Li J, Stoica P, and Wang Z. On robust capon beamforming and diagonal loading[J]. IEEE Transactions on Signal Processing, 2003, 51(7): 1702-1715.
    Vorobyov S A, Chen H, and Gershman B. On the relationship between robust minimum variance beamformers with probabilistic and worst-case distortionless response of constraints [J]. IEEE Transactions on Signal Processing, 2008, 56(11): 5719-5724.
    Hassanien A, Vorobyov S A, and Wong K M. Robust adaptive beamforming using sequential quadratic programming: an iterative solution to the mismatch problem[J]. IEEE Signal Processing Letters, 2008(15): 733-736.
    Khabbazibasmenj A, Vorobyov S A, and Aboulnasr H. Robust adaptive beamforming based on steering vector estimation with as little as possible prior information[J]. IEEE Transactions on Signal Processing, 2012: 60(6): 2974-2978.
    Gu Y, Goodman N A, Hong S H, et al.. Robust adaptive beamforming based on interference covariance matrix sparse reconstruction[J]. Signal Processing, 2014, 96(B): 375-381.
    Li J, Wei G, and Ding Y. Adaptive beamforming based on covariance matrix reconstruction by exploiting interferences cyclostationarity[J]. Signal Processing, 2013, 93(9): 2543-2547.
    Zhu L Y, Ser W, Er M H, et al.. Robust adaptive beamformers based on worst-case optimization and constraints on magnitude response[J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2615-2628.
    Zhang T T and Ser W. Robust beampattern synthesis for antenna arrays with mutual coupling effect[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(8): 2889-2895.
    Xu D J, He R, and Shen F. Robust beamforming with magnitude response constraints and conjugate symmetric constraint[J]. IEEE Communications Letters, 2013, 17(3): 561-564.
    Liao B, Tsui K M, and Chan S C. Robust beamforming with magnitude response constraints using iterative second-order cone programming[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(9): 3477-3482.
    Zhu L Y, Er M H, Ser W, et al.. Spectral factorization for integer-interval sampled sequence with applications in array processing[J]. Signal Processing, 2008, 88(7): 1715-1724.
    Xu J W, Liao G S, and Zhu S Q. Robust LCMV beamformer based on phase response constraint[J]. Electronics Letters, 2012, 48(20): 1304-1306.
    许京伟,廖桂生,朱圣棋. 基于幅相线性约束的自适应和差波束形成方法[J]. 电子学报, 2013, 41(9): 1724-1729.
    Xu Jing-wei, Liao Gui-sheng, and Zhu Sheng-qi. Approach of adaptive sum and difference beamforming based on magnitude and phase linear constraint[J]. Acta Electronica Sinica, 2013, 41(9): 1724-1729.
    胡光书. 数字信号处理: 理论. 算法与实现[M]. 北京:清华大学出版社, 2012: 218-237.
    Escobar G, Mattavelli P, Hernandez G M, et al.. Filters with linear-phase properties for repetitive feedback[J]. IEEE Transactions on Industrial Electronics, 2014, 61(1): 405-413.
  • 加载中
计量
  • 文章访问数:  1439
  • HTML全文浏览量:  85
  • PDF下载量:  475
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-27
  • 修回日期:  2015-03-11
  • 刊出日期:  2015-07-19

目录

    /

    返回文章
    返回