高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于红外压缩成像的点目标跟踪方法研究

李少毅 梁爽 张凯 董敏周 闫杰

李少毅, 梁爽, 张凯, 董敏周, 闫杰. 基于红外压缩成像的点目标跟踪方法研究[J]. 电子与信息学报, 2015, 37(7): 1639-1645. doi: 10.11999/JEIT141324
引用本文: 李少毅, 梁爽, 张凯, 董敏周, 闫杰. 基于红外压缩成像的点目标跟踪方法研究[J]. 电子与信息学报, 2015, 37(7): 1639-1645. doi: 10.11999/JEIT141324
Li Shao-yi, Liang Shuang, Zhang Kai, Dong Min-zhou, Yan Jie. Research of Infrared Compressive Imaging Based Point Target Tracking Method[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1639-1645. doi: 10.11999/JEIT141324
Citation: Li Shao-yi, Liang Shuang, Zhang Kai, Dong Min-zhou, Yan Jie. Research of Infrared Compressive Imaging Based Point Target Tracking Method[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1639-1645. doi: 10.11999/JEIT141324

基于红外压缩成像的点目标跟踪方法研究

doi: 10.11999/JEIT141324
基金项目: 

国家自然科学基金(60974149)和航天科技创新基金(CASC201104)

Research of Infrared Compressive Imaging Based Point Target Tracking Method

  • 摘要: 目前压缩测量的应用研究主要集中在重构图像方面,但是很多应用中最终目的是检测和跟踪。直接基于压缩测量的检测和跟踪问题尚未解决。该文首次建立一种压缩域到空间域的映射模型,并提出一种无需重构任何图像且直接从低维压缩测量中经解码进行目标跟踪的方法,并分析其应用于天基红外探测的可能性。该方法利用Hadamard测量矩阵构建红外压缩成像系统,采用自适应压缩背景差分法从低维压缩测量信息中分离背景和前景,再从压缩前景信息中解码目标空间位置,并结合数据关联和Kalman滤波算法解决了杂波环境下点目标跟踪问题。理论分析和仿真实验结果表明,该方法能利用少量压缩测量实现目标跟踪任务,并减小探测器规格及相关算法的计算复杂度和存储代价。
  • Takhar D, Laska J N, Wakin M B, et al.. A new compressive imaging camera architecture using optical-domain compression[C]. Proceedings of SPIE 6065 Computational Imaging IV, San Jose, USA, 2006: 606509.
    August Y, Vachman C, Rivenson Y, et al.. Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains[J]. Applied Optics, 2013, 52(10): D46-D54.
    Kuiteing S K, Coluccia G, Barducci A, et al.. Compressive hyperspectral imaging using progressive total variation[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 7794-7798.
    Wagadarikar A, John R, Willett R, et al.. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10): B44-B51.
    Slinger C W, Gilholm K, Gordon N, et al.. Adaptive coded aperture imaging in the infrared: towards a practical implementation[C]. Proceedings of SPIE Adaptive Coded Aperture Imaging and Non-imaging Sensors II, San Diego, USA, 2008: 709609.
    Mahalanobis A, Reyner C, Patel H, et al.. IR performance study of an adaptive coded aperture diffractive imaging system employing MEMS eyelid shutter technologies[C]. Proceedings of SPIE Adaptive Coded Aperture Imaging and Non-Imaging Sensors, San Diego, USA, 2007: 67140D.
    Cevher V, Sankaranarayanan A, Duarte M F, et al.. Compressive Sensing for Background Subtraction[M]. Berlin: Springer, 2008: 155-168.
    Mei X and Ling H. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259-2272.
    Li H, Shen C, and Shi Q. Real-time visual tracking using compressive sensing[C]. Proceedings of 24th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, USA, 2011: 1305-1312.
    Shujuan G, Insuk K, and Seong T J. Sparse representation
    based target detection in frared image[J]. International Journal of Energy, Information and Communications, 2013, 4(6): 21-28.
    Neifeld M A and Ke J. Optical architectures for compressive imaging[J]. Applied Optics, 2007, 46(22): 5293-5303.
    Willett R M, Marcia R F, and Nichols J M. Compressed sensing for practical optical imaging systems: a tutorial[J]. Optical Engineering, 2011, 50(7): 072601.
    Hayashi K, Nagahara M, and Tanaka T. A user,s guide to compressed sensing for communications systems[J]. IEICE Transactions on Communications, 2013, 96(3): 685-712.
    Keil K H and Hupfer W. Simulation of signal and data processing for a pair of GEO IR sensors[C]. Preoceedings of SPIE Signal and Data Processing of Small Targets, San Diego, USA, 2007: 1-12.
    Aziz A M. A new nearest-neighbor association approach based on fuzzy clustering[J]. Aerospace Science and Technology, 2013, 26(1): 87-97.
    Dallil A, Oussalah M, and Ouldali A. Sensor fusion and target tracking using evidential data association[J]. IEEE Sensors Journal, 2013, 13(1): 285-293.
    李正周, 金钢, 董能力. 基于改进概率数据关联滤波的红外小运动目标跟踪[J]. 电子与信息学报, 2008, 30(4): 954-956.
    Li Zheng-zhou, Jin Gang, and Dong Neng-li. A novel method for tracking and recognizing infrared dim and small moving target based on modified probabilistic data associating filter[J]. Journal of Electronics Information Technology, 2008, 30(4): 954-956.
    Habtemariam B, Tharmarasa R, Thayaparan T, et al.. A multiple-detection joint probabilistic data association filter[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 461-471.
  • 加载中
计量
  • 文章访问数:  1241
  • HTML全文浏览量:  98
  • PDF下载量:  640
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-15
  • 修回日期:  2015-01-09
  • 刊出日期:  2015-07-19

目录

    /

    返回文章
    返回