高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地基雷达部署对探测临近空间高超声速目标影响研究

肖松 谭贤四 王红 曲智国

肖松, 谭贤四, 王红, 曲智国. 地基雷达部署对探测临近空间高超声速目标影响研究[J]. 电子与信息学报, 2015, 37(7): 1723-1728. doi: 10.11999/JEIT141024
引用本文: 肖松, 谭贤四, 王红, 曲智国. 地基雷达部署对探测临近空间高超声速目标影响研究[J]. 电子与信息学报, 2015, 37(7): 1723-1728. doi: 10.11999/JEIT141024
Xiao Song, Tan Xian-si, Wang Hong, Qu Zhi-guo. Detection Performance Assessment of Near-space Hypersonic Target Based on Ground-based Radar[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1723-1728. doi: 10.11999/JEIT141024
Citation: Xiao Song, Tan Xian-si, Wang Hong, Qu Zhi-guo. Detection Performance Assessment of Near-space Hypersonic Target Based on Ground-based Radar[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1723-1728. doi: 10.11999/JEIT141024

地基雷达部署对探测临近空间高超声速目标影响研究

doi: 10.11999/JEIT141024
基金项目: 

国家自然科学基金(61271451)和国家自然科学基金青年科学基金(61401504)

Detection Performance Assessment of Near-space Hypersonic Target Based on Ground-based Radar

  • 摘要: 针对不同地基雷达(GBR)部署方式对探测临近空间高超声速目标的性能影响问题,该文建立临近空间高超声速目标模型和GBR探测模型,依据目标雷达截面积(RCS)、探测距离和观测角随时间的变化情况,提出检测概率、跟踪系数和资源冗余率3种雷达探测性能评估指标,仿真分析GBR前沿部署、接力部署和要地部署方式对临近空间高超声速目标探测性能的影响。结果表明,前沿部署和接力部署相结合的探测效果好,前沿部署首次发现目标距离远,能提供的预警时间长,要地部署跟踪时间短,资源冗余率高。研究结果具有一定现实意义和工程实践性,能为临近空间预警系统中GBR部署提供理论依据和技术支撑。
  • 朱志良, 叶宁, 刘军, 等. 基于临近空间飞行器的区域自组网优化部署算法[J]. 电子与信息学报, 2011, 33(4): 915-920.
    Zhu Zhi-liang, Ye Ning, Liu Jun, et al.. Deployment optimization algorithm for regional MANET containing near space vehicles as a part[J]. Journal of Electronics Information Technology, 2011, 33(4): 915-920.
    肖松, 谭贤四, 王红, 等. 临近空间高超声速目标断续点迹航迹起始方法[J]. 华中科技大学学报(自然科学版), 2014, 42(3): 52-57.
    Xiao Song, Tan Xian-si, Wang Hong, et al.. Feasible track initiation method for near space hypersonic target[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2014, 42(3): 52-57.
    曾开春, 向锦武. 高超声速飞行器飞行动力学特性不确定分析[J]. 航空学报, 2013, 34(4): 798-808.
    Zeng Kai-chun and Xiang Jin-wu. Uncertainty analysis of flight dynamic characteristics for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 798-808.
    Zhao Jing, Jiang Bin, Shi Peng, et al.. Adaptive dynamic sliding mode control for near space vehicles under actuator faults[J]. Circuits System and Signal Processing, 2013, 32(5): 2281-2296.
    Huang Wei, Ma Lin, and Wang Zhen-guo. A parametric study on the aerodynamic characteristics of a hypersonic waverider vehicle[J]. Acta Astronautica, 2011, 69(3/4): 135-140.
    李罗钢, 荆武兴, 高长生. 基于预警卫星系统的临近空间飞行器跟踪[J]. 航空学报, 2014, 35(1): 105-114.
    Li Luo-gang, Jing Wu-xing, and Gao Chang-sheng. Tracking near space vehicle using early-warning satellite[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 105-114.
    汪连栋, 曾勇虎, 高磊, 等. 临近空间高超声速目标雷达探测技术现状与趋势[J]. 信号处理, 2014, 30(1): 72-85.
    Wang Lian-dong, Zeng Yong-hu, Gao Lei, et al.. Technology status and development trend for radar detection of hypersonic target in near space[J]. Journal of Signal Processing, 2014, 30(1): 72-85.
    Ling Yang, Jing Liang, and Liu Wei-wei. Graphical deployment strategies in radar sensor networks (RSN) for target detection[J]. EURASIP Journal on Wireless Communications and Networking, 2013, 2013(1): 1-9.
    Gao Shang. Optimal deployment problems of radar network [J]. Research Journal of Applied Sciences Engineering and Technology, 2013, 6(10): 1879-1883.
    李奇. 基于分布式算法的雷达组网抗干扰优化部署研究[D]. [硕士论文], 西安电子科技大学, 2013.
    Li Qi. Research on optimized anti-jamming development model of radar networks based on distributed algorithm[D]. [Master dissertation], Xidian University, 2013.
    熊军. 基于遗传算法的雷达网优化部署研究[D]. [硕士论文], 山西师范大学, 2013.
    Xiong Jun. Radar network deployment optimization based on genetic algorithm research[D]. [Master dissertation], Shanxi Normal University, 2013.
    刘彦君, 黄金才, 王江. 有源干扰条件下基于NSGA-Ⅱ的雷达网优化部署方法[J]. 指挥控制与仿真, 2014, 36(1): 36-40.
    Liu Yan-jun, Huang Jin-cai, and Wang Jiang. Optimal deployment of radar network based on NSGA-Ⅱ under active jamming[J]. Command Control Simulation, 2014, 36(1): 36-40.
    李惠峰. 高超声速飞行器制导与控制技术[M]. 北京: 中国宇航出版社, 2012: 36-120.
    Li Hui-feng. Hypersonic Vehicle Guidance and Control Technique[M]. Beijing: China Astronautic Publishing House, 2012: 36-120.
    乐嘉陵. 再入物理[M]. 北京: 国防工业出版社, 2005: 40-98.
    Yue Jia-ling. Reentry Physical[M]. Beijing: National Defense Industry Press, 2005: 40-98.
    Marini J W. On the decrease of the radar cross section of the apollo command module due to reentry plasma effects[R]. Washington: National Aeronautics and Space Administration, 1968.
    Huber P. Hypersonic shock-heated flow parameters for velocities to 46,000 feet per second and altitudes to 323,000 feet[R]. Washington: National Aeronautics and Space Administration, 1963.
    张毅, 肖龙旭, 王顺宏. 弹道导弹弹道学[M]. 长沙: 国防科技大学出版社, 1999: 261-282.
    Zhang Yi, Xiao Long-xu, and Wang Shun-hong. Ballistic Ballistics[M]. Changsha: National Defense University 1999: 261-282.
    李志淮, 谭贤四, 王红, 等. 基于运动参数估计的高超声速目标检测方法研究[J]. 宇航学报, 2012, 33(3): 346-352.
    Li Zhi-huai, Tan Xian-si, Wang Hong, et al.. Detection algorithm for hypersonic targets based on motion parameter estimation[J]. Journal of Astronautics, 2012, 33(3): 346-352.
  • 加载中
计量
  • 文章访问数:  1810
  • HTML全文浏览量:  241
  • PDF下载量:  530
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-24
  • 修回日期:  2015-03-20
  • 刊出日期:  2015-07-19

目录

    /

    返回文章
    返回