高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于逆序广义2近邻的图像多重复制粘贴篡改检测算法

李岩 刘念 张斌 袁开国 杨义先

李岩, 刘念, 张斌, 袁开国, 杨义先. 一种基于逆序广义2近邻的图像多重复制粘贴篡改检测算法[J]. 电子与信息学报, 2015, 37(7): 1667-1673. doi: 10.11999/JEIT141271
引用本文: 李岩, 刘念, 张斌, 袁开国, 杨义先. 一种基于逆序广义2近邻的图像多重复制粘贴篡改检测算法[J]. 电子与信息学报, 2015, 37(7): 1667-1673. doi: 10.11999/JEIT141271
Li Yan, Liu Nian, Zhang Bin, Yuan Kai-guo, Yang Yi-xian. Image Multiple Copy-move Forgery Detection Algorithm Based on Reversed-generalized 2 Nearest-neighbor[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1667-1673. doi: 10.11999/JEIT141271
Citation: Li Yan, Liu Nian, Zhang Bin, Yuan Kai-guo, Yang Yi-xian. Image Multiple Copy-move Forgery Detection Algorithm Based on Reversed-generalized 2 Nearest-neighbor[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1667-1673. doi: 10.11999/JEIT141271

一种基于逆序广义2近邻的图像多重复制粘贴篡改检测算法

doi: 10.11999/JEIT141271
基金项目: 

国家自然科学基金(61170271, 61121061),新闻出版署项目(GXTC-CZ-1015004/15-1)和中央高校基本科研业务费专项资金(BUPT2012RC0217)资助课题

Image Multiple Copy-move Forgery Detection Algorithm Based on Reversed-generalized 2 Nearest-neighbor

  • 摘要: 为了解决数字图像多重复制粘贴篡改检测问题,克服广义2近邻(g2NN)算法对匹配特征点漏检的缺点,该文提出逆序广义2近邻(Rg2NN)算法。在计算匹配特征点时,该算法采用逆序方式计算特征点之间的匹配关系,可以更加准确地计算出所有与待检测特征点相匹配的特征点。实验证明,Rg2NN算法比g2NN算法计算出来的匹配特征点更加准确,提高了g2NN算法对多重复制粘贴篡改图像的检测能力,当图像中的一块区域被复制后在多处粘贴,或多块区域被复制粘贴时可以准确计算出复制粘贴区域。
  • Qazi T, Hayat K, Khan S U, et al.. Survey on blind image forgery detection[J]. IET Image Processing, 2013, 7(7): 660-670.
    Al-Qershi O M and Khoo B E. Passive detection of copy- move forgery in digital images: state-of-the-art[J]. Forensic Science International, 2013, 231(1/3): 284-295.
    Ali Qureshi M and Deriche M. A review on copy move image forgery detection techniques[C]. Proceedings of the 11th International Multi-Conference on Systems, Signals Devices (SSD), Barcelona, Spain, 2014: 1-5.
    王青, 张荣. 基于DCT系数双量化映射关系的图像盲取证算法[J]. 电子与信息学报, 2014, 36(9): 2068-2074.
    Wang Qing and Zhang Rong. Exposing digital image forgeries based on double quantization mapping relation of DCT coefficient[J]. Journal of Electronics Information Technology, 2014, 36(9): 2068-2074.
    Wu Y, Deng Y, Duan H, et al.. Dual tree complex wavelet transform approach to copy-rotate-move forgery detection[J]. SCIENCE CHINA Information Sciences, 2014, 57(1): 1-12.
    Wang W, Dong J, and Tan T N. Exploring DCT coefficient quantization effects for local tampering detection[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(10): 1653-1666.
    Niu S Z, Meng X Z, and Cui H L. Digital image forensics using orthogonal 1-D objects[J]. Chinese Journal of Electronics, 2014, 23(3): 545-549.
    Liu B, Pun C M, and Yuan X C. Digital image forgery detection using JPEG features and local noise discrepancies [J]. The Scientific World Journal, 2014(1): 1-12.
    Fridrich A J, Soukal B D, and Luk? A J. Detection of copy-move forgery in digital images[C]. Proceedings of the Digital Forensic Research Workshop, Cleveland, USA, 2003: 55-61.
    Popescu A C and Farid H. Exposing digital forgeries by detecting duplicated image regions[R]. Department of Computer Science, Dartmouth College, 2004.
    Jaberi M, Bebis G, Hussain M, et al.. Accurate and robust localization of duplicated region in copy-move image forgery [J]. Machine Vision and Applications, 2014, 25(2): 451-475.
    Bo X, Junwen W, Guangjie L, et al.. Image copy-move forgery detection based on SURF[C]. Proceedings of the International Conference on Multimedia Information Networking and Security (MINES), Nanjing, China, 2010: 889-892.
    Mishra P, Mishra N, Sharma S, et al.. Region duplication forgery detection technique based on SURF and HAC[J]. The Scientific World Journal, 2013(1): 1-8.
    Chen L, Lu W, Ni J, et al.. Region duplication detection based on Harris corner points and step sector statistics[J]. Journal of Visual Communication and Image Representation, 2013, 24(3): 244-254.
    Amerini I, Ballan L, Caldelli R, et al.. A SIFT-based forensic method for copy-move attack detection and transformation recovery[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 1099-1110.
    Bay H, Ess A, Tuytelaars T, et al.. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
    Beis J S and Lowe D G. Shape indexing using approximate nearest-neighbour search in high-dimensional spaces[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 1997: 1000-1006.
    Amerini I, Ballan L, Caldelli R, et al.. Copy-move forgery detection and localization by means of robust clustering with J-linkage[J]. Signal Processing: Image Communication, 2013, 28(6): 659-669.
    Kakar P and Sudha N. Exposing postprocessed copy-paste forgeries through transform-invariant features[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(3): 1018-1028.
    Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
    Toldo R and Fusiello A. Robust multiple structures estimation with J-linkage[C]. Proceedings of the 10th European Conference on Computer Vision, Marseille, France, 2008, 5302: 537-547.
    Suzuki S. Topological structural analysis of digitized binary images by border following[J]. Computer Vision, Graphics, and Image Processing, 1985, 30(1): 32-46.
    Jegou H, Douze M, and Schmid C. Hamming embedding and weak geometric consistency for large scale image search[C]. Proceedings of the 10th European Conference on Computer Vision, Marseille, France, 2008, 5302: 304-317.
  • 加载中
计量
  • 文章访问数:  2005
  • HTML全文浏览量:  199
  • PDF下载量:  674
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-30
  • 修回日期:  2015-04-03
  • 刊出日期:  2015-07-19

目录

    /

    返回文章
    返回