Donoho D L, Elad M, and Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.
|
Candes E J, Romberg J K, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223
|
Candes E J and Tao T. Near-optimal signal recovery from random projections: universal encoding strategies[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
|
郑红, 李振. 压缩感知理论投影矩阵优化方法综述[J]. 数据采集与处理, 2014, 52(1): 43-53.
|
Zheng Hong and Li Zhen. Survey on optimization methods for projection matrix in compress sensing theory[J]. Journal of Data Acquisition and Processing, 2014, 52(1): 43-53.
|
戴琼海, 付长军, 季向阳. 压缩感知研究[J]. 计算机学报, 2011, 34(3): 425-434.
|
Dai Qiong-hai, Fu Chang-jun, and Ji Xiang-yang. Research on compressed sensing[J]. Chinese Journal of Computers, 2011, 34(3): 425-434.
|
Elad M. Optimized projections for compressed sensing[J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5695-5703.
|
Abolghasemi V, Ferdowsi S, and Sanei S. A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing[J]. Signal Processing, 2012, 92(3): 999-1009.
|
李佳, 王强, 沈毅, 等. 压缩感知中测量矩阵与重建算法的协同构造[J]. 电子学报, 2013, 41(1): 29-34.
|
Li Jia, Wang Qiang, Shen Yi, et al.. Collaborative construction of measurement matrix and reconstruction algorithm in compressive sensing[J]. Acta Electronica Sinica, 2013, 41(1): 29-34.
|
Zhang Qi-heng, Fu Yu-li, Li Hai-feng, et al.. Optimized projection matrix for compressed sensing[J]. Circuit System Signal Processing, 2014, 33(5): 1627-1636.
|
Xu Jian-ping, Pi Yi-ming, and Cao Zong-jie. Optimized projection matrix for compressive sensing[J]. EURASIP Journal on Advances in Signal Processing, 2010, DOI: 10.1155/2010/560349.
|
林波, 张增辉, 朱炬波. 基于压缩感知的DOA估计稀疏化模型与性能分析[J]. 电子与信息学报, 2014, 36(3): 589-594.
|
Lin Bo, Zhang Zeng-hui, and Zhu Ju-bo. Sparsity model and performance analysis of DOA estimation with compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(3): 589-594.
|
Donoho D L. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(6): 797-829.
|
Donoho D L and Stark P B. Uncertainty principles and signal recovery[J]. SIAM Journal on Applied Mathematics, 1989, 49(3): 906-931.
|
Donoho D L and Elad M. Optimally sparse representation in general (nonorthogonal) dictionaries via minimization[J]. Proceedings of the National Academy of Science, 2003, 100(5): 2197-2202.
|
Jorge N and Wright S J. Numerical Optimization Theoretical and Practical Aspects[M]. 2nd Edition, New York: Springer- Verlag Berlin and Heidelberg GmbH Co. K, 2006: 30-60.
|