高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种用于压缩感知理论的投影矩阵优化算法

吴光文 张爱军 王昌明

吴光文, 张爱军, 王昌明. 一种用于压缩感知理论的投影矩阵优化算法[J]. 电子与信息学报, 2015, 37(7): 1681-1687. doi: 10.11999/JEIT141450
引用本文: 吴光文, 张爱军, 王昌明. 一种用于压缩感知理论的投影矩阵优化算法[J]. 电子与信息学报, 2015, 37(7): 1681-1687. doi: 10.11999/JEIT141450
Wu Guang-wen, Zhang Ai-jun, Wang Chang-ming. Novel Optimization Method for ProjectionMatrix in Compress Sensing Theory[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1681-1687. doi: 10.11999/JEIT141450
Citation: Wu Guang-wen, Zhang Ai-jun, Wang Chang-ming. Novel Optimization Method for ProjectionMatrix in Compress Sensing Theory[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1681-1687. doi: 10.11999/JEIT141450

一种用于压缩感知理论的投影矩阵优化算法

doi: 10.11999/JEIT141450
基金项目: 

国家自然科学基金(61161010, 11265001)和高等学校博士学科点专项科研基金(20133219110027)

Novel Optimization Method for ProjectionMatrix in Compress Sensing Theory

  • 摘要: 考虑到投影矩阵对压缩感知(CS)算法性能的影响,该文提出一种优化投影矩阵的算法。该方法提出可导的阈值函数,通过收缩Gram矩阵非对角元的方法压缩投影矩阵和稀疏字典的相关系数,引入基于沃尔夫条件(Wolfes conditions)的梯度下降法求解最佳投影矩阵,达到提高投影矩阵优化算法稳定度和重构信号精度的目的。通过基追踪(BP)算法和正交匹配追踪(OMP)算法求解l0优化问题,用压缩感知方法实现随机稀疏向量、小波测试信号和图像信号的感知和重构。仿真实验表明,该文提出的投影矩阵优化算法能较大地提高重构信号的精度。
  • Donoho D L, Elad M, and Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.
    Candes E J, Romberg J K, and Tao T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223
    Candes E J and Tao T. Near-optimal signal recovery from random projections: universal encoding strategies[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
    郑红, 李振. 压缩感知理论投影矩阵优化方法综述[J]. 数据采集与处理, 2014, 52(1): 43-53.
    Zheng Hong and Li Zhen. Survey on optimization methods for projection matrix in compress sensing theory[J]. Journal of Data Acquisition and Processing, 2014, 52(1): 43-53.
    戴琼海, 付长军, 季向阳. 压缩感知研究[J]. 计算机学报, 2011, 34(3): 425-434.
    Dai Qiong-hai, Fu Chang-jun, and Ji Xiang-yang. Research on compressed sensing[J]. Chinese Journal of Computers, 2011, 34(3): 425-434.
    Elad M. Optimized projections for compressed sensing[J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5695-5703.
    Abolghasemi V, Ferdowsi S, and Sanei S. A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing[J]. Signal Processing, 2012, 92(3): 999-1009.
    李佳, 王强, 沈毅, 等. 压缩感知中测量矩阵与重建算法的协同构造[J]. 电子学报, 2013, 41(1): 29-34.
    Li Jia, Wang Qiang, Shen Yi, et al.. Collaborative construction of measurement matrix and reconstruction algorithm in compressive sensing[J]. Acta Electronica Sinica, 2013, 41(1): 29-34.
    Zhang Qi-heng, Fu Yu-li, Li Hai-feng, et al.. Optimized projection matrix for compressed sensing[J]. Circuit System Signal Processing, 2014, 33(5): 1627-1636.
    Xu Jian-ping, Pi Yi-ming, and Cao Zong-jie. Optimized projection matrix for compressive sensing[J]. EURASIP Journal on Advances in Signal Processing, 2010, DOI: 10.1155/2010/560349.
    林波, 张增辉, 朱炬波. 基于压缩感知的DOA估计稀疏化模型与性能分析[J]. 电子与信息学报, 2014, 36(3): 589-594.
    Lin Bo, Zhang Zeng-hui, and Zhu Ju-bo. Sparsity model and performance analysis of DOA estimation with compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(3): 589-594.
    Donoho D L. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(6): 797-829.
    Donoho D L and Stark P B. Uncertainty principles and signal recovery[J]. SIAM Journal on Applied Mathematics, 1989, 49(3): 906-931.
    Donoho D L and Elad M. Optimally sparse representation in general (nonorthogonal) dictionaries via minimization[J]. Proceedings of the National Academy of Science, 2003, 100(5): 2197-2202.
    Jorge N and Wright S J. Numerical Optimization Theoretical and Practical Aspects[M]. 2nd Edition, New York: Springer- Verlag Berlin and Heidelberg GmbH Co. K, 2006: 30-60.
  • 加载中
计量
  • 文章访问数:  1547
  • HTML全文浏览量:  127
  • PDF下载量:  700
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-20
  • 修回日期:  2015-02-11
  • 刊出日期:  2015-07-19

目录

    /

    返回文章
    返回