高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于在线判别式字典学习的鲁棒视觉跟踪

薛模根 朱虹 袁广林

薛模根, 朱虹, 袁广林. 基于在线判别式字典学习的鲁棒视觉跟踪[J]. 电子与信息学报, 2015, 37(7): 1654-1659. doi: 10.11999/JEIT141325
引用本文: 薛模根, 朱虹, 袁广林. 基于在线判别式字典学习的鲁棒视觉跟踪[J]. 电子与信息学报, 2015, 37(7): 1654-1659. doi: 10.11999/JEIT141325
Xue Mo-gen, Zhu Hong, Yuan Guang-lin. Robust Visual Tracking Based on Online Discrimination Dictionary Learning[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1654-1659. doi: 10.11999/JEIT141325
Citation: Xue Mo-gen, Zhu Hong, Yuan Guang-lin. Robust Visual Tracking Based on Online Discrimination Dictionary Learning[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1654-1659. doi: 10.11999/JEIT141325

基于在线判别式字典学习的鲁棒视觉跟踪

doi: 10.11999/JEIT141325
基金项目: 

国家自然科学基金(61175035, 61379105),中国博士后科学基金(2014M562535)和安徽省自然科学基金(1508085QF114)

Robust Visual Tracking Based on Online Discrimination Dictionary Learning

  • 摘要: 现有子空间跟踪方法较好地解决了目标表观变化和遮挡问题,但是它对复杂背景下目标跟踪的鲁棒性较差。针对此问题,该文首先提出一种基于Fisher准则的在线判别式字典学习模型,利用块坐标下降和替换操作设计了该模型的在线学习算法用于视觉跟踪模板更新。其次,定义候选目标编码系数与目标样本编码系数均值之间的距离为系数误差,提出以候选目标的重构误差与系数误差的组合作为粒子滤波的观测似然跟踪目标。实验结果表明:与现有跟踪方法相比,该文跟踪方法具有较强的鲁棒性和较高的跟踪精度。
  • Li Xi, Hu Wei-ming, Shen Chun-hua, et al.. A survey of appearance models in visual object tracking[J]. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 1-48.
    Ross D, Lim J, Lin R S, et al.. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141.
    Mei Xue and Ling Hai-bin. Robust visual tracking using L1 minimization[C]. IEEE International Conference on Computer Vision, Kyoto, 2009: 1436-1443.
    Black M J and Jepson A D. Eigentracking: Robust matching and tracking of articulated objects using a view-based representation[C]. European Conference on Computer Vision, London, 1996: 329-342.
    Bao Cheng-long, Wu Yi, Ling Hai-bin, et al.. Real time robust L1 tracker using accelerated proximal gradient approach[C]. IEEE Conference on Computer Vision and Pattern Recognition, Providence, 2012: 1830-1837.
    Xing Jun-liang, Gao Jin, Li Bing, et al.. Robust object tracking with online multi-lifespan dictionary learning[C]. IEEE International Conference on Computer Vision, Sydney, 2013: 665-672.
    Mairal J, Bach F, Ponce J, et al.. Online dictionary learning for sparse coding[C]. The 26th International Conference on Machine Learning, Montreal, 2009: 539-547.
    Wang Nai-yan, Wang Jing-dong, and Yeung D. Online robust non-negative dictionary learning for visual tracking[C]. IEEE International Conference on Computer Vision. Sydney, 2013: 657-664.
    Yang Meng, Zhang Lei, Feng Xiang-chu, et al.. Sparse representation based Fisher discrimination dictionary learning for image classification[C]. IEEE International Conference on Computer Vision, Barcelina, 2011: 543-550.
    Richtarik P and Takac M. Iteration complexity of randomized block-coordinate decent methods for minimizing a composite function[J]. Mathematical Programming, 2014, 144(1): 1-38.
    Rosasco L, Verri A, Santoro M, et al.. Iterative projection methods for structured sparsity regularization[R]. MIT, 2009.
    Wu Yi, Lim J, and Yang M. Online object tracking: a benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, 2013: 2411-2418.
    Zhang Kai-hua, Zhang Lei, and Yang M H. Fast compressive tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015.
    Wang Dong, Lu Hu-chuan, and Yang M H. Online object tracking with sparse prototypes[J]. IEEE Transactions on Image Processing, 2013, 22(1): 314-325.
    Zhang Tian-zhu, Ghanem B, Liu Si, et al.. Robust visual tracking via structured multi-task sparse learning[J]. International Journal of Computer Vision, 2013, 101(2): 367-383.
  • 加载中
计量
  • 文章访问数:  1306
  • HTML全文浏览量:  117
  • PDF下载量:  573
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-20
  • 修回日期:  2015-02-09
  • 刊出日期:  2015-07-19

目录

    /

    返回文章
    返回