高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于抽样流长与完全抽样阈值的异常流自适应抽样算法

伊鹏 钱坤 黄万伟 王晶 张震

伊鹏, 钱坤, 黄万伟, 王晶, 张震. 基于抽样流长与完全抽样阈值的异常流自适应抽样算法[J]. 电子与信息学报, 2015, 37(7): 1606-1611. doi: 10.11999/JEIT141379
引用本文: 伊鹏, 钱坤, 黄万伟, 王晶, 张震. 基于抽样流长与完全抽样阈值的异常流自适应抽样算法[J]. 电子与信息学报, 2015, 37(7): 1606-1611. doi: 10.11999/JEIT141379
Yi Peng, Qian Kun, Huang Wan-wei, Wang Jing, Zhang Zhen. Adaptive Flow Sampling Algorithm Based on Sampled Packets and Force Sampling Threshold S Towards Anomaly Detection[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1606-1611. doi: 10.11999/JEIT141379
Citation: Yi Peng, Qian Kun, Huang Wan-wei, Wang Jing, Zhang Zhen. Adaptive Flow Sampling Algorithm Based on Sampled Packets and Force Sampling Threshold S Towards Anomaly Detection[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1606-1611. doi: 10.11999/JEIT141379

基于抽样流长与完全抽样阈值的异常流自适应抽样算法

doi: 10.11999/JEIT141379
基金项目: 

国家973计划项目(2012CB315901, 2013CB329104)

Adaptive Flow Sampling Algorithm Based on Sampled Packets and Force Sampling Threshold S Towards Anomaly Detection

  • 摘要: 高速IP网络的流量测量与异常检测是网络测量领域研究的热点。针对目前网络流量测量算法对小流估计精度偏低,对异常流量筛选能力较差的缺陷,该文提出一种基于业务流已抽样长度与完全抽样阈值S的自适应流抽样算法(AFPT)。AFPT算法根据完全抽样阈值S筛选对异常流量敏感相关的小流,同时根据业务流已抽样长度自适应调整抽样概率。仿真和实验结果表明,AFPT算法的估计误差与理论上界相符,具有较强的异常流量筛选能力,能够有效提高异常检测算法的准确率。
  • Zhou Ai-ping, Cheng Guang, and Guo Xiao-jun. High-speed network traffic measurement method[J]. Journal of Software, 2014, 25(1): 135-153.
    Peter Lieven and Bj?rnScheuermann. High-speed per-flow traffic measurement with probabilistic multiplicity counting [C]. Proceedings of the INFOCOM 2010, San Diego, CA, USA, 2010: 1-9.
    Cheng Guang and Tang Yong-ning. Estimation algorithms of the flow number from sampled packets on approximate approaches[J]. Journal of Software, 2013, 24(2): 255-265.
    Lee Y J, Yeh Y R, and Wang Y C F. Anomaly detection via online oversampling principal component analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(7): 1460-1470.
    Pham D S, Venkatesh S, Lazarescu M, et al.. Anomaly detection in large-scale data stream networks[J]. Data Mining and Knowledge Discovery, 2014, 28(1): 145-189.
    Cai Yuan-jun, Wu Bin, Zhang Xin-wei, et al.. Flow identification and characteristics mining from internet traffic with hadoop[C]. Proceedings of the Computer Information and Telecommunication Systems (CITS), Jeju Island, Korea, 2014: 1-5.
    Brauckhoff D, Tellenbach B, Wagner A, et al.. Impact of packet sampling on anomaly detection metrics[C]. Proceedings. of the 6th ACM Sigcomm conference on Internet measurement, Rio de Janeiro, Brazil, 2006: 159-164.
    Mai Jian-ning, Chuah C N, Sridharan A, et al.. Is sampled data sufficient for anomaly detection?[C]. Proceedings of the 6th ACM Sigcomm Conference on Internet Measurement, Rio de Janeiro, Brazil, 2006: 165-176.
    Kumar A and Xu J. Sketch guided sampling using on-line estimates of flow size for adaptive data collection[C]. Proceedings of IEEE INFOCOM 2006, Barcelona, Spain, 2006: 1-11.
    Li Tao and Chen Shi-gang. Per-flow traffic measurement through randomized counter sharing[J]. IEEE ACM Transactions on Networking, 2012, 13(5): 325-336.
    王苏南. 高速复杂网络环境下异常流量检测技术研究[D]. [博士论文], 信息工程大学, 2012:38-49.
    Wang Su-nan. Research on anomaly detection technology in high-speed complex network environment[D]. [Ph.D. dissertation], The PLA Information Engineering University, 2012: 38-49.
    郭通. 基于自适应流抽样测量的网络异常检测技术研究[D]. [博士论文], 信息工程大学, 2013: 38-49.
    Guo Tong. Research on network anomaly detection technology based on adaptive flow sampling measurement[D]. [Ph.D. dissertation], The PLA Information Engineering University, 2013: 38-49.
    Lakhina A, Crovella M, and Diot C. Mining anomalies using traffic feature distributions[C]. Proceedings of the 5th ACM Sigcomm Conference on Internet Measurement, Philadelphia, PA, USA, 2005: 217-228.
  • 加载中
计量
  • 文章访问数:  1410
  • HTML全文浏览量:  181
  • PDF下载量:  1187
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-29
  • 修回日期:  2015-01-13
  • 刊出日期:  2015-07-19

目录

    /

    返回文章
    返回