高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无线传感器网络中基于压缩感知和GM(1,1)的异常检测方案

李鹏 王建新 曹建农

李鹏, 王建新, 曹建农. 无线传感器网络中基于压缩感知和GM(1,1)的异常检测方案[J]. 电子与信息学报, 2015, 37(7): 1586-1590. doi: 10.11999/JEIT141219
引用本文: 李鹏, 王建新, 曹建农. 无线传感器网络中基于压缩感知和GM(1,1)的异常检测方案[J]. 电子与信息学报, 2015, 37(7): 1586-1590. doi: 10.11999/JEIT141219
Li Peng, Wang Jian-xin, Cao Jian-nong. Abnormal Event Detection Scheme Based on Compressive Sensing and GM (1,1) in Wireless Sensor Networks[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1586-1590. doi: 10.11999/JEIT141219
Citation: Li Peng, Wang Jian-xin, Cao Jian-nong. Abnormal Event Detection Scheme Based on Compressive Sensing and GM (1,1) in Wireless Sensor Networks[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1586-1590. doi: 10.11999/JEIT141219

无线传感器网络中基于压缩感知和GM(1,1)的异常检测方案

doi: 10.11999/JEIT141219
基金项目: 

国家自然科学基金重点项目(61232001/F02)和国家自然科学基金面上项目(61173169/F020802)

Abnormal Event Detection Scheme Based on Compressive Sensing and GM (1,1) in Wireless Sensor Networks

  • 摘要: 针对现有的异常事件检测算法准确率低和能量开销较大等问题,该文提出一种基于压缩感知(CS)和GM(1,1) 的异常事件检测方案。首先,基于分簇的思想将传感器节点的数据进行压缩采样后传输至Sink,针对传感器网络中数据稀疏度未知的特点,提出一种基于步长自适应的块稀疏信号重构算法。然后,Sink基于CM(1,1)对节点发生的异常进行预测,并对节点的工作状态进行自适应调整。仿真实验结果表明,相比于其它异常检测算法,该算法的误警率和漏检率较低,在保证异常事件检测可靠性的同时,有效地节省了节点能量。
  • 张波, 刘郁林, 王开, 等. 基于概率稀疏随机矩阵的压缩数据收集方法[J]. 电子与信息学报, 2014, 36(6): 1478-1484.
    Zhang Bo, Liu Yu-lin, Wang Kai, et al.. Compressive data gathering method based on probabilistic sparse random matrices[J]. Journal of Electronics Information Technology, 2014, 36(6): 1478-1484.
    Xie Miao, Hu Jian-kun, Han Song, et al.. Scalable hypergrid k-NN-based online anomaly detection in-network aggregation for wireless sensor networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(8): 1661-1670.
    Xia Yu, Zhao Zhi-feng, and Zhang Hong-gang. Distributed anomaly event detection in wireless networks using compressed sensing[C]. 2011 11th International Symposium
    on Communications and Information Technologies, Hangzhou, China, 2011: 250-255.
    Wang Jin, Tang Shao-jie, Yin Bao-cai, et al.. Distributed compressive sampling for lifetime optimization in dense wireless sensor networks through intelligent compressive sensing[C]. IEEE International Conference on Computer Communications, Orlando, FL, USA, 2012: 603-611.
    Sun Bo, Shan Xue-mei, Wu Kui, et al.. Anomaly detection based secure in-network aggregation for wireless sensor networks[J]. IEEE Systems Journal, 2013, 7(1): 13-25.
    Vempaty A, Han Y, and Varshney P. Target localization in wireless sensor networks using error correcting codes[J]. IEEE Transactions on Information Theory, 2014, 60(1): 697-712.
    Cheng C T, Tse C K, and Lau F C M. A delay-aware data collection network structure for wireless sensor networks[J]. IEEE Sensors Journal, 2011, 11(3): 699-710.
    练秋生, 刘芳, 陈书贞. 基于块 A*正交匹配追踪的多传感器数据联合重构算法[J]. 电子与信息学报, 2013, 35(3): 721-727.
    Lian Qiu-sheng, Liu Fang, and Chen Shu-zhen. A joint reconstruction algorithm for multiple sensor data based on block A* orthogonal matching pursuit[J]. Journal of Electronics Information Technology, 2013, 35(3): 721-727.
    奎晓燕, 张士庚, 王建新. DSCAU: 非均衡负载无线传感器网络的基于支配集的分簇数据收集算法[J]. 高技术通讯, 2012, 22(9): 918-924.
    Kui Xiao-yan, Zhang Shi-geng, and Wang Jian-xin. DSCAU: a dominating set based clustering algorithm for data gathering in wireless sensor networks with unbalanced traffic load[J]. High Technology Letters, 2012, 22(9): 918-924.
    Eldar Y C, Kuppinger P, and Bolcskei H. Block-sparse signals: uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3042-3054.
    Luo R C and Chen O. Mobile sensor node deployment and asynchronous power management for wireless sensor networks[J]. IEEE Transactions on Industrial Electronics, 2012, 59(5): 2377-2385.
  • 加载中
计量
  • 文章访问数:  1455
  • HTML全文浏览量:  143
  • PDF下载量:  637
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-17
  • 修回日期:  2015-03-02
  • 刊出日期:  2015-07-19

目录

    /

    返回文章
    返回