高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于影响函数的k-近邻分类

职为梅 张婷 范明

职为梅, 张婷, 范明. 基于影响函数的k-近邻分类[J]. 电子与信息学报, 2015, 37(7): 1626-1632. doi: 10.11999/JEIT141433
引用本文: 职为梅, 张婷, 范明. 基于影响函数的k-近邻分类[J]. 电子与信息学报, 2015, 37(7): 1626-1632. doi: 10.11999/JEIT141433
Zhi Wei-mei, Zhang Ting, Fan Ming. k-nearest Neighbor Classification Based on Influence Function[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1626-1632. doi: 10.11999/JEIT141433
Citation: Zhi Wei-mei, Zhang Ting, Fan Ming. k-nearest Neighbor Classification Based on Influence Function[J]. Journal of Electronics & Information Technology, 2015, 37(7): 1626-1632. doi: 10.11999/JEIT141433

基于影响函数的k-近邻分类

doi: 10.11999/JEIT141433
基金项目: 

国家自然科学基金(61170223)和河南省教育厅科学技术研究重点项目(14A520016)资助课题

k-nearest Neighbor Classification Based on Influence Function

  • 摘要: 分类是一种监督学习方法,通过在训练数据集学习模型判定未知样本的类标号。与传统的分类思想不同,该文从影响函数的角度理解分类,即从训练样本集对未知样本的影响来判定未知样本的类标号。首先介绍基于影响函数分类的思想;其次给出影响函数的定义,设计3种影响函数;最后基于这3种影响函数,提出基于影响函数的k-近邻(kNN)分类方法。并将该方法应用到非平衡数据集分类中。在18个UCI数据集上的实验结果表明,基于影响函数的k-近邻分类方法的分类性能好于传统的k-近邻分类方法,且对非平衡数据集分类有效。
  • Tan P N and Steinbach M著, 范明, 范宏建, 译. 数据挖掘入门[M]. 第2版, 北京: 人民邮电出版社, 2011: 127-187.
    Quinlan J S. Induction of decision trees[J]. Machine Learning, 1986, 1(1): 81-106.
    Domingos P and Pazzani M J. Beyond independence: conditions for the optimality of the simple bayesian classifier[C].?Proceedings of the International Conference on Machine Learning, Bari, Italy, 1996: 105-112.
    Rumelhart D E, Hinton G E, and Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(9): 533-536.
    Boser B E,?Guyon I M, and Vapnik V N.?A training algorithm for optimal margin classifiers[C].?Proceedings of the Conference on Learning Theory, Pittsburgh, USA, 1992: 144-152.
    Dasarathy B V. Nearest Neighbor (NN) norms: NN Pattern Classification Techniques[M]. Michigan: IEEE Computer Society Press, 1991: 64-85.
    Leake D B.?Experience, introspection and expertise: learning to refine the case-based reasoning process[J].?Journal of Experimental Theoretical Artificial Intelligent, 1996, 8(3/4): 319-339.
    Hinneburg A and Keim D A. An efficient approach to clustering in large multimedia databases with noise[C]. Proceedings of the Knowledge Discovery and Data Mining, New York, USA, 1998: 58-65.
    html. 2014.5.
    Liu X Y, Li Q Q, and Zhou Z H. Learning imbalanced multi-class data with optimal dichotomy weights[C]. Proceedings of the 13th IEEE International Conference on Data Mining, Dallas, USA, 2013: 478-487.
    He H B and Edwardo A G. Learning from imbalanced Data [J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263-1284.
    Maratea A, Petrosino A, and Manzo M. Adjusted F-measure and kernel scaling for imbalanced data learning[J]. Information Sciences, 2014(257): 331-341.
    Wang S and Yao X. Multiclass imbalance problems: analysis and potential solutions[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B, 2012, 42(4): 1119-1130.
    Lin M, Tang K, and Yao X. Dynamic sampling approach to training neural networks for multiclass imbalance classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(4): 647-660.
    Peng L Z, Zhang H L, Yang B, et al.. A new approach for imbalanced data classification based on data gravitation[J]. Information Sciences, 2014(288): 347-373.
    Menardi G and Torelli N. Training and assessing classification rules with imbalanced data[J]. Data Mining and Knowledge Discovery, 2014, 28(1): 92-122.
  • 加载中
计量
  • 文章访问数:  1427
  • HTML全文浏览量:  153
  • PDF下载量:  573
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-13
  • 修回日期:  2015-04-03
  • 刊出日期:  2015-07-19

目录

    /

    返回文章
    返回