摘要: 现有基于网络报文流量信息的协议分析方法仅考虑报文载荷中的明文信息,不适用于包含大量密文信息的安全协议。为充分发掘利用未知规范安全协议的密文数据特征,针对安全协议报文明密文混合、密文位置可变的特点,该文提出一种基于熵估计的安全协议密文域识别方法CFIA(Ciphertext Field Identification Approach)。在挖掘关键词序列的基础上,利用字节样本熵描述网络流中字节的分布特性,并依据密文的随机性特征,基于熵估计预定位密文域分布区间,进而查找密文长度域,定位密文域边界,识别密文域。实验结果表明,该方法仅依靠网络数据流量信息即可有效识别协议密文域,并具有较高的准确率。
摘要: 该文基于布鲁姆过滤器算法和三态内容寻址存储器(Ternary Content Addressable Memory, TCAM)技术提出一种高效范围匹配方法,解决了目前TCAM范围匹配方案存在的存储利用率低、功耗大的问题。设计基于最长共同前缀的分段匹配算法(Segmented Match on Longest Common Prefix, SMLCP)将范围匹配拆分为前缀匹配和特征区间比对两步,TCAM空间利用率达到100%。根据SMLCP算法设计了BF-TCAM模型,使用布鲁姆过滤器对关键字过滤,屏蔽无关项参与比较,大幅降低功耗。使用流水线缩短关键路径长度,使查找操作在一个时钟周期内完成。研究结果表明,所提方法实现了零范围扩张,工作功耗较传统TCAM降低50%以上。