高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对称稳定分布噪声下基于广义相关熵的DOA估计新方法

王鹏 邱天爽 任福全 李景春 谭海峰

王鹏, 邱天爽, 任福全, 李景春, 谭海峰. 对称稳定分布噪声下基于广义相关熵的DOA估计新方法[J]. 电子与信息学报, 2016, 38(8): 2007-2013. doi: 10.11999/JEIT151217
引用本文: 王鹏, 邱天爽, 任福全, 李景春, 谭海峰. 对称稳定分布噪声下基于广义相关熵的DOA估计新方法[J]. 电子与信息学报, 2016, 38(8): 2007-2013. doi: 10.11999/JEIT151217
WANG Peng, QIU Tianshuang, REN Fuquan, LI Jingchun, TAN Haifeng. A Novel Generalized Correntropy Based Method for Direction of Arrival Estimation in Symmetric Alpha Stable Noise Environments[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2007-2013. doi: 10.11999/JEIT151217
Citation: WANG Peng, QIU Tianshuang, REN Fuquan, LI Jingchun, TAN Haifeng. A Novel Generalized Correntropy Based Method for Direction of Arrival Estimation in Symmetric Alpha Stable Noise Environments[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2007-2013. doi: 10.11999/JEIT151217

对称稳定分布噪声下基于广义相关熵的DOA估计新方法

doi: 10.11999/JEIT151217
基金项目: 

国家自然科学基金(61139001, 61172108, 81241059)

A Novel Generalized Correntropy Based Method for Direction of Arrival Estimation in Symmetric Alpha Stable Noise Environments

Funds: 

The National Natural Science Foundation of China (61139001, 61172108, 81241059)

  • 摘要: 针对稳定随机变量有限二阶矩不存在的特点,该文定义了一种新的广义相关熵,并从理论上证明了对称稳定分布随机变量广义相关熵的有界性。此外,提出了一种稳定分布噪声下基于最小广义相关熵准则的DOA估计新方法,给出了一种迭代优化算法并通过仿真实验分析了算法的收敛性。仿真结果表明,与现有基于分数低阶矩的FLOM-MUSIC、基于类相关熵的CRCO-MUSIC以及基于lp范数的ACO-MUSIC算法相比,所提方法可以获得更好的估计结果,尤其是在高脉冲性噪声环境下具有更加明显的优势。
  • KRIM H and VIBERG M. Two decades of array signal processing research: the parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 64-97. doi: 10.1109/79. 526899.
    SCHMIDE R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280. doi: 10.1109/tap. 1986.1143830.
    SHAO M and NIKIAS C L. Signal processing with fractional lower order moments: stable processes and their applications[J]. Proceedings of the IEEE, 1993, 81(7): 986-1010. doi: 10.1109/5.231338.
    TSAKALIDES P and NIKIAS C L. The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments[J]. IEEE Transactions on Signal Processing, 1996, 44(7): 1623-1633. doi: 10.1109/78.510611.
    LIU T and MENDEL J M. A subspace-based direction finding algorithm using fractional lower order statistics[J]. IEEE Transactions on Signal Processing, 2001, 49(8): 1605-1613. doi: 10.1109/78.934131.
    ZHANG J F and QIU T S. A novel covariation based noncircular sources direction finding method under impulsive noise environments[J]. Signal Processing, 2014, 98: 252-262. doi: 10.1016/j.sigpro.2013.11.031.
    BELKACEMI H and MARCOS S. Robust subspace-based algorithms for joint angle/Doppler estimation in non-Gaussian clutter[J]. Signal Processing, 2007, 87(7): 1547-1558. doi: 10.1016/j.sigpro.2006.12.015.
    YOU G H, QIU T S, and SONG A M. Novel direction findings for cyclostationary signals in impulsive noise environments[J]. Circuits, Systems, and Signal Processing, 2013, 32(6): 2939-2956. doi: 10.1007/s00034-013-9597-0.
    张金凤, 邱天爽, 宋爱民, 等. Alpha稳定分布噪声环境下类M估计相关的DOA估计新算法[J]. 通信学报, 2013, 34(5): 71-78. doi: 10.3969/j.issn.1000-436x.2013.05.008.
    ZHANG Jinfeng, QIU Tianshuang, SONG Aimin, et al. M-estimate like correlation based algorithm for direction of arrival estimation under alpha-stable environments[J]. Journal on Communications, 2013, 34(5): 71-78. doi: 10.3969/j.issn.1000-436x.2013.05.008.
    ZHANG J F, QIU T S, SONG A M, et al. A novel correntropy based DOA estimation algorithm in impulsive noise environments[J]. Signal Processing, 2014, 104: 346-357. doi: 10.1016/j.sigpro.2014.04.033.
    邱天爽, 张金凤, 宋爱民, 等. 脉冲噪声下基于广义类相关熵的DOA估计新方法[J]. 信号处理, 2012, 28(4): 463-466.
    QIU Tianshuang, ZHANG Jinfeng, SONG Aimin, et al. The generalized correntropy-analogous statistics based direction of arrival estimation in impulsive noise environments[J]. Signal Processing, 2012, 28(4): 463-466.
    ZENG W J, SO H C, and HUANG L. lp-MUSIC: Robust direction-of-arrival estimator for impulsive noise environments[J]. IEEE Transactions on Signal Processing, 2013, 61(17): 4296-4308. doi: 10.1109/tsp.2013.2263502.
    LIU W F, POKHAREL P P, and PRINCIPE J C. Correntropy: properties and applications in non-Gaussian signal processing[J]. IEEE Transactions on Signal Processing, 2007, 55(11): 5286-5298. doi: 10.1109/tsp.2007.896065.
    宋爱民, 邱天爽, 佟祉谏. 对称稳定分布的相关熵及其在时间延迟估计上的应用[J]. 电子与信息学报, 2011, 33(2): 494-498. doi: 10.3724/SP.J.1146.2010.00309.
    SONG Aimin, QIU Tianshuang, and TONG Zhijian. Correntropy of the symmetric stable distribution and its application to the time dealy estimation[J]. Journal of Electronics Information Technology, 2011, 33(2): 494-498. doi: 10.3724/SP.J.1146.2010.00309.
    WU Z Z, SHI J H, ZHANG X, et al. Kernel recursive maximum correntropy[J]. Signal Processing, 2015, 117: 11-26. doi: 10.1016/j.sigpro.2015.04.024.
    CHEN B D, LEI X, LIANG J L, et al. Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion[J]. IEEE Signal Processing Letters, 2014, 21(7): 880-884. doi: 10.1109/LSP.2014. 2319308.
    WANG L F and PAN C H. Robust level set image segmentation via a local correntropy-based K-means clustering[J]. Pattern Recognition, 2014, 47(5): 1917-1925. doi: 10.1016/j.patcog.2013.11.014.
    MELIA U, GUAITA M, VALLVERDU M, et al. Correntropy measures to detect daytime sleepiness from EEG signals[J]. Physiological Measurements, 2014, 35(10): 2067-2083. doi: 10.1088/0967-3334/35/10/2067.
    MARKOVSKY I. Low Rank Approximation: Algorithms, Implementation, Applications[M]. London, UK, Springer- Verlag London, 2011: 60-64.
  • 加载中
计量
  • 文章访问数:  1224
  • HTML全文浏览量:  110
  • PDF下载量:  385
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-03
  • 修回日期:  2016-03-03
  • 刊出日期:  2016-08-19

目录

    /

    返回文章
    返回