高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用多级残差滤波的非局部均值图像去噪方法

孙伟峰 戴永寿

孙伟峰, 戴永寿. 采用多级残差滤波的非局部均值图像去噪方法[J]. 电子与信息学报, 2016, 38(8): 1999-2006. doi: 10.11999/JEIT151227
引用本文: 孙伟峰, 戴永寿. 采用多级残差滤波的非局部均值图像去噪方法[J]. 电子与信息学报, 2016, 38(8): 1999-2006. doi: 10.11999/JEIT151227
SUN Weifeng, DAI Yongshou. Non-local Means Image Denoising with Multi-stage Residual Filtering[J]. Journal of Electronics & Information Technology, 2016, 38(8): 1999-2006. doi: 10.11999/JEIT151227
Citation: SUN Weifeng, DAI Yongshou. Non-local Means Image Denoising with Multi-stage Residual Filtering[J]. Journal of Electronics & Information Technology, 2016, 38(8): 1999-2006. doi: 10.11999/JEIT151227

采用多级残差滤波的非局部均值图像去噪方法

doi: 10.11999/JEIT151227
基金项目: 

国家自然科学基金(61501520),山东省自然科学基金(ZR2013FL035),中央高校基本科研业务费专项资金(14CX02083A)

Non-local Means Image Denoising with Multi-stage Residual Filtering

Funds: 

The National Natural Science Foundation of China (61501520), Shandong Provincial Natural Science Foundation (ZR2013FL035), The Fundamental Research Funds for the Central Universities (14CX02083A)

  • 摘要: 为充分利用残差中的图像信息以提升非局部均值算法的去噪性能,该文提出一种多级残差图像滤波新方法。首先对含噪图像进行非局部均值滤波得到初始的去噪图像和权值分布矩阵,然后对残差图像进行固定权值非局部均值滤波来提取图像结构信息,将提取的信息经高斯平滑抑噪后作为补偿图像,与去噪图像相加得到增强的恢复图像。针对上述方法提出一种多级滤波的实现方案,从理论上推导证明了该方法的原理及可行性,并提出一种无需参考图像的迭代停止准则来自适应地优选滤波级数。实验结果表明,提出的迭代停止准则能够达到与峰值信噪比一致的优选结果;与经典的非局部均值算法相比,在计算效率相当的情况下,所提方法能够显著地提升其去噪性能,峰值信噪比平均可以提高1.2 dB,且具有更好的细节保持能力。
  • BUADES A, COLL B, and MOREL J M. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling and Simulation (SIAM Interdisciplanary Journal), 2005, 4(2): 490-530. doi: 10.1137/040616024.
    钟莹, 杨学志, 唐益明, 等. 采用结构自适应块匹配的非局部均值去噪算法[J]. 电子与信息学报, 2013, 35(12): 2908-2915. doi: 10.3724/SP.J.1146.2013.00099.
    ZHONG Ying, YANG Xuezhi, TANG Yiming, et al. Non-local means denoising derived from structure-adapted block matching[J]. Journal of Electronics Information Technology, 2013, 35(12): 2908-2915. doi: 10.3724/SP.J.1146.2013.00099.
    SUTOUR C, DELEDALLE C A, and AUJOL J F. Adaptive regularization of the nl-means: application to image and video denoising[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3506-3521. doi: 10.1109/TIP.2014.2329448.
    LU Lu, JIN Weiqi, and WANG Xia. Non-local means image denoising with a soft threshold[J]. IEEE Signal Processing Letters, 2015, 22(7): 833-837. doi: 10.1109/LSP.2014.2371332.
    DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. doi: 10.1109/TIP.2007.901238.
    DELEDALLE C A, DENIS L, and TUPIN F. Iterative weighted maximum likelihood denoising with probabilistic patch-based weights[J]. IEEE Transactions on Image Processing, 2009, 18(12): 2661-2672. doi: 10.1109/TIP. 2009.2029593.
    罗亮, 冯象初, 张选德, 等. 基于非局部双边随机投影低秩逼近图像去噪算法[J]. 电子与信息学报, 2013, 35(1): 99-105. doi: 10.3724/SP.J.1146.2012.00819.
    LUO Liang, FENG Xiangchu, ZHANG Xuande, et al. An image denoising method based on non-local two-side random projection and low rank approximation[J]. Journal of Electronics Information Technology, 2013, 35(1): 99-105. doi: 10.3724/SP.J.1146.2012.00819.
    TALEBI H and MILANFAR P. Global image denoising[J]. IEEE Transactions on Image Processing, 2014, 23(2): 755-768. doi: 10.1109/TIP.2013.2293425.
    LIU Ganchao, ZHONG Hua, and JIAO Licheng. Comparing noisy patches for image denoising: a double noise similarity model[J]. IEEE Transactions on Image Processing, 2015, 24(3): 862-872. doi: 10.1109/TIP.2014.2387390.
    FENG Jianzhou, SONG Li, HUO Xiaoming, et al. An optimized pixel-wise weighting approach for patch-based image denoising[J]. IEEE Signal Processing Letters, 2015, 22(1): 115-119. doi: 10.1109/LSP.2014.2350032.
    BRUNET D, VRSCAY E R, and WANG Z. The use of residuals in image denoising[C]. Proceedings of the International Conference on Image Analysis and Recognition, Halifax, 2009: 1-12. doi: 10.1007/978-3-642-02611-9_1.
    CHEN J, TANG C K, and WANG J. Noise brush: interactive high quality image noise separation[J]. ACM Transactions on Graphics, 2009, 28(5): 146: 1-10. doi: 10.1145/1618452. 1618492.
    PYO Y, PARK RH, and CHANG S. Noise reduction in high-iso images using 3-d collaborative filtering and structure extraction from residual blocks[J]. IEEE Transactions on Consumer Electronics, 2011, 57(2): 687-695. doi: 10.1109/ TCE.2011.5955209.
    ZHONG H, YANG C, and ZHANG X H. A new weight for nonlocal means denoising using method noise[J]. IEEE Signal Processing Letters, 2012, 19(8): 535-538. doi: 10.1109/ LSP.2012.2205566.
    KUMAR B K S. Image denoising based on non-local means filter and its method noise thresholding[J]. Signal, Image and Video Processing, 2012, 7(6): 1211-1227. doi: 10.1007/ s11760-012-0372-7.
    ROMANO Y and ELAD M. Improving K-SVD denoising by post-processing its method noise[C]. IEEE International Conference on Image Processing, Melbourne, 2013: 435-439. doi: 10.1109/ ICIP. 2013.6738090.
    ROMANO Y and ELAD M. Boosting of image denoising algorithms[J]. SIAM Journal on Imaging Sciences, 2015, 8(2): 1187-1219. doi: 10.1137/140990978.
    KONG X F, LI K, YANG Q X, et al. A new image quality metric for image auto-denoising[C]. 14th IEEE International Conference on Computer Vision, Sydney, 2013: 2888-2895. doi: 10.1109/ICCV.2013.359.
    WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861.
    CHANG S G, YU B, and VETTERLI B. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Transactions on Image Processing, 2000, 9(9): 1532-1546. doi: 10.1109/83.862633.
  • 加载中
计量
  • 文章访问数:  1501
  • HTML全文浏览量:  143
  • PDF下载量:  1072
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-03
  • 修回日期:  2016-03-04
  • 刊出日期:  2016-08-19

目录

    /

    返回文章
    返回