高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RankClus算法的机场流程日志活动挖掘

徐涛 孟野 卢敏

徐涛, 孟野, 卢敏. 基于RankClus算法的机场流程日志活动挖掘[J]. 电子与信息学报, 2016, 38(8): 2033-2039. doi: 10.11999/JEIT151137
引用本文: 徐涛, 孟野, 卢敏. 基于RankClus算法的机场流程日志活动挖掘[J]. 电子与信息学报, 2016, 38(8): 2033-2039. doi: 10.11999/JEIT151137
XU Tao, MENG Ye, LU Min . Activity Mining for Airport Event Logs Based on RankClus Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2033-2039. doi: 10.11999/JEIT151137
Citation: XU Tao, MENG Ye, LU Min . Activity Mining for Airport Event Logs Based on RankClus Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2033-2039. doi: 10.11999/JEIT151137

基于RankClus算法的机场流程日志活动挖掘

doi: 10.11999/JEIT151137
基金项目: 

国家自然科学基金(61502499),中国民航科技创新引导资金项目重大专项(MHRD20140105),中央高校科研业务费专项资金(3122013C005, 3122014D032, 3122015D015),中国民航大学科研基金(2013QD18X),中国民航信息技术科研基地开放课题基金(CAAC-ITRB-201401)

Activity Mining for Airport Event Logs Based on RankClus Algorithm

Funds: 

The National Natural Science Foundation of China (61502499), The Civil Aviation Key Technologies RD Program of China (MHRD20140105), The Fundamental Research Funds for the Central Universities of China (3122013C005, 3122014D032, 3122015D015), The Scientific Research Foundation from Civil Aviation University of China (2013QD18X), The Open Project Foundation of Information Technology Research Base of Civil Aviation Administration of China (CAAC-ITRB-201401)

  • 摘要: 流程挖掘技术可以提取机场流程日志中的有用信息用于流程分析。但机场流程日志处于细节化的低抽象层次,不符合分析者的预期。对机场流程日志挖掘得到的流程模型呈现意面状的复杂结构,流程模型的含义难于理解。解决该问题的一种方法是通过活动挖掘,将低抽象层次活动聚类为流程模型中表征高抽象层次活动的活动类簇。为此提出了一种基于RankClus算法的活动挖掘方法,将机场流程日志的活动聚类与活动排序评分计算相结合,从而构建更易理解的活动聚类流程模型。实验结果表明,RankClus活动聚类流程模型的日志回放一致性与原生日志流程模型大致相当,但在结构复杂度上要显著低于原生日志流程模型。
  • VAN DER AALST W M P. Process mining: Overview and opportunities[J]. ACM Transactions on Management Information Systems, 2012, 3(2): 1-17. doi: 10.1145/2229156. 2229157.
    LANZ A, WEBER B, and REICHERT M. Time patterns for process-aware information systems[J]. Requirements Engineering, 2014, 19(2): 113-141. doi: 10.1007/s00766-012- 0162-3.
    BOSE R P J C, VAN DER AALST W M P, ZLIOBAITE I, et al. Dealing with concept drifts in process mining[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(1): 154-171. doi: 10.1109/TNNLS.2013.2278313.
    GNTHER C W, ROZINAT A, and VAN DER AALST W M P. Activity mining by global trace segmentation[C]. Proceedings of the 8th International Conference on Business Process Management, Hoboken, 2010: 128-139. doi: 10.1007/ 978-3-642-12186-9_13.
    DESAI N, BHAMIDIPATY A, SHARMA B, et al. Process trace identification from unstructured execution logs[C]. Proceedings of the 7th International Conference on Services Computing, Miami, 2010: 17-24. doi: 10.1109/SCC.2010.86.
    BAIER T, MENDLING J, and WESKE M. Bridging abstraction layers in process mining[J]. Information Systems, 2014, 46(12): 123-139. doi: 10.1016/j.is.2014.04.004.
    SONG M, GNTHER C W, and VAN DER AALST W M P. Trace clustering in process mining[C]. Proceedings of the 7th International Conference on Business Process Management, Ulm, 2009: 109-120. doi: 10.1007/978-3-642-00328-8_11.
    BOSE R P J C and VAN DER AALST W M P. Context aware trace clustering: towards improving process mining results[C]. Proceedings of the 2009 SIAM Data Mining Conference, Sparks, 2009: 401-412. doi: 10.1137/1. 9781611972795.35.
    BOSE R P J C and VAN DER AALST W M P. Trace clustering based on conserved patterns: Towards achieving better process models[C]. Proceedings of the 8th International Conference on Business Process Management, Hoboken, 2010: 170-181. doi: 10.1007/978-3-642-12186-9_16.
    SUN Y, HAN J, ZHAO P, et al. Rankclus: integrating clustering with ranking for heterogeneous information network analysis[C]. Proceedings of the 12th International Conference on Extending Database Technology: Advances in Database Technology, Saint-Petersburg, 2009: 565-576. doi: 10.1145/1516360.1516426.
    FERREIRA D R, SZIMANSKI F, and RALHA C G. Improving process models by mining mappings of low-level events to high-level activities[J]. Journal of Intelligent Information Systems, 2014, 43(2): 379-407. doi: 10.1007/ s10844-014-0327-2.
    SHAN S, WANG L, and LI L. Modeling of emergency response decision-making process using stochastic Petri net: an e-service perspective[J]. Information Technology and Management, 2012, 13(4): 363-376. doi: 10.1007/s10799- 012-0128-7.
    陈季梦, 陈佳俊, 刘杰, 等. 基于结构相似度的大规模社交网络聚类算法[J]. 电子与信息学报, 2015, 37(2): 449-454. doi: 10.11999/JEIT140512.
    CHEN Jimeng, CHEN Jiajun, LIU Jie, et al. Clustering algorithms for large-scale social networks based on structural similarity[J]. Journal of Electronics Information Technology, 2015, 37(2): 449-454. doi: 10.11999/JEIT140512.
    陈丽敏, 杨静, 张健沛. 一种基于嵌入技术的异构信息网络的快速聚类算法[J]. 电子与信息学报, 2015, 37(11): 2634-2641. doi: 10.11999/JEIT150106.
    CHEN Limin, YANG Jing, and ZHANG Jianpei. A fast clustering algorithm based on embedding technology for heterogeneous information networks[J]. Journal of Electronics Information Technology, 2015, 37(11): 2634-2641. doi: 10.11999/JEIT150106.
    LEEMANS S J J, FAHLAND D, and VAN DER AALST W M P. Discovering block-structured process models from event logs containing infrequent behaviour[C]. Proceedings of the 11th International Conference on Business Process Management, Eindhoven, 2014: 66-78. doi: 10.1007/978-3- 319-06257-0_6.
    GRABBE S R, SRIDHAR B, and MUKHERJEE A. Clustering days with similar airport weather conditions[C]. Proceedings of the 14th AIAA Aviation Technology, Integration, and Operations Conference, Atlanta, 2014: 2014-2712. doi: 10.2514/6.2014-2712.
    JOHNSTONE M, LE V T, ZHANG J, et al. A dynamic time warped clustering technique for discrete event simulation- based system analysis[J]. Expert Systems with Applications, 2015, 42(21): 8078-8085. doi: 10.1016/j.eswa.2015.06.040.
    ADRIANSYAH A, SIDOROVA N, and VAN DONGEN B F. Cost-based fitness in conformance checking[C]. Proceedings of the 11th International Conference on Application of Concurrency to System Design, Kanazawa, 2011: 57-66. doi: 10.1109/ACSD.2011.19.
  • 加载中
计量
  • 文章访问数:  1434
  • HTML全文浏览量:  161
  • PDF下载量:  874
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-10
  • 修回日期:  2016-04-15
  • 刊出日期:  2016-08-19

目录

    /

    返回文章
    返回