高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合PLS表示与随机梯度的目标优化跟踪

金广智 石林锁 刘浩 牟伟杰 蔡艳平

金广智, 石林锁, 刘浩, 牟伟杰, 蔡艳平. 结合PLS表示与随机梯度的目标优化跟踪[J]. 电子与信息学报, 2016, 38(8): 2027-2032. doi: 10.11999/JEIT151082
引用本文: 金广智, 石林锁, 刘浩, 牟伟杰, 蔡艳平. 结合PLS表示与随机梯度的目标优化跟踪[J]. 电子与信息学报, 2016, 38(8): 2027-2032. doi: 10.11999/JEIT151082
JIN Guangzhi, SHI Linsuo, LIU Hao, MU Weijie, CAI Yanping. Object Optimization Tracking via PLS Representation and Stochastic Gradient[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2027-2032. doi: 10.11999/JEIT151082
Citation: JIN Guangzhi, SHI Linsuo, LIU Hao, MU Weijie, CAI Yanping. Object Optimization Tracking via PLS Representation and Stochastic Gradient[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2027-2032. doi: 10.11999/JEIT151082

结合PLS表示与随机梯度的目标优化跟踪

doi: 10.11999/JEIT151082
基金项目: 

国家自然科学基金(61501470)

Object Optimization Tracking via PLS Representation and Stochastic Gradient

Funds: 

The National Natural Science Foundation of China (61501470)

  • 摘要: 针对实际视觉跟踪中目标表观与前背景的非线性变化,论文提出一种基于偏最小二乘分析(PLS)表示与随机梯度的目标优化跟踪方法。该方法将目标跟踪转化为表示误差与分类损失的联合优化问题。首先,为了提高算法对前背景表观变化的稳定性,利用PLS理论的非线性对目标区域的前背景信息进行表达,并通过空间聚类构造多个线性外观模型来描述目标区域的动态变化,建立带约束条件的表观特征库;然后,提出一种确定性搜索机制,构造联合优化目标函数,使表示误差与分类损失最小化;结合表观建模特点,构建随机梯度分类器,对模型进行增量特征更新,最终实现对目标的稳定准确跟踪。经多场景对比实验验证,该算法能有效应对目标前背景的多种复杂变化。
  • YANG H, SHAO L, ZHENG F, et al. Recent advances and trends in visual tracking: A review[J]. Neurocomputing, 2011, 74(18): 3823-3831.
    ROSS D, LIM J, LIN R S, et al. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(3): 125-141.
    ZHANG L and VANDER MATTEN L J P. Preserving structure in model-free tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(4): 756-769.
    ORON S, BAR-HILLEL A, LEVI D, et al. Locally orderless tracking[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, 2012: 1940-1947.
    ZHANG S, YAO H, ZHOU H, et al. Robust visual tracking based on online learning sparse representation[J]. Neurocomputing, 2013, 100(1): 31-40.
    POLING B, LEMAN G, and SZLAM A. Better feature tracking through linear subspace constraints[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, 2014: 3454-3461.
    GRABNER H, LEISTNER C, and BISCHOF H. Semi- supervised on-line boosting for robust tracking[C]. European Conference on Computer Vision, Crete Greece, 2010: 234-247.
    BABENKO B, YANG M H, and BELONGIE S. Visual tracking with online multiple instance learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Colorado, 2011: 983-990.
    KALAL Z, MATAS J, and MIKOLAJCZYK K. P-N learning: Bootstrapping binary classifiers by structural constraints[C]. IEEE Conference on Computer Vision and Pattern Recognition, California, 2010: 49-56.
    WANG Qing, CHEN Feng, XU Wenli, et al. Online discriminative object tracking with local sparse representation[J]. IEEE Workshop on the Applications of Computer Vision, 2012, 12(4): 425-432.
    CHEN Feng, WANG Qing, WANG Song, et al. Object tracking via appearance modeling and sparse representation [J]. Image and Vision Computing, 2013, 29(11): 787-796.
    ROSIPAL R and KRAMER N. Overview and recent advances in partial least squares[J]. Latent Structure and Feature Selection, 2010, 18(3): 34-51.
    HU W, LI W, ZHANG X, et al. Single and multiple object tracking using a multi-feature joint sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(4): 816-833.
    ZOU H and HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society: Series B, 2011, 67(2): 301-320.
    BORDERS A, BOTTOU L, and GALLINARI P. Sgd-qn: careful quasi-newton stochastic gradient descent[J]. The Journal of Machine Learning Research, 2014, 98(10): 1737-1754.
    WU Y, LIM J, and YANG M H. Object tracking benchmark [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848.
  • 加载中
计量
  • 文章访问数:  1236
  • HTML全文浏览量:  149
  • PDF下载量:  328
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-23
  • 修回日期:  2016-05-10
  • 刊出日期:  2016-08-19

目录

    /

    返回文章
    返回