高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种-100 dB电源抑制比的非带隙基准电压源

黄国城 尹韬 朱渊明 许晓冬 张亚朝 杨海钢

黄国城, 尹韬, 朱渊明, 许晓冬, 张亚朝, 杨海钢. 一种-100 dB电源抑制比的非带隙基准电压源[J]. 电子与信息学报, 2016, 38(8): 2122-2128. doi: 10.11999/JEIT151256
引用本文: 黄国城, 尹韬, 朱渊明, 许晓冬, 张亚朝, 杨海钢. 一种-100 dB电源抑制比的非带隙基准电压源[J]. 电子与信息学报, 2016, 38(8): 2122-2128. doi: 10.11999/JEIT151256
HUANG Guocheng, YIN Tao, ZHU Yuanming, XU Xiaodong, ZHANG Yachao, YANG Haigang. A -100 dB Power Supply Rejection Ratio Non-bandgap Voltage Reference[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2122-2128. doi: 10.11999/JEIT151256
Citation: HUANG Guocheng, YIN Tao, ZHU Yuanming, XU Xiaodong, ZHANG Yachao, YANG Haigang. A -100 dB Power Supply Rejection Ratio Non-bandgap Voltage Reference[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2122-2128. doi: 10.11999/JEIT151256

一种-100 dB电源抑制比的非带隙基准电压源

doi: 10.11999/JEIT151256
基金项目: 

国家自然科学基金(61474120),国家重点基础研究发展计划(2014CB744600)

A -100 dB Power Supply Rejection Ratio Non-bandgap Voltage Reference

Funds: 

The National Natural Science Foundation of China (61474120), The National Key Basic Research Program of China (2014CB744600)

  • 摘要: 该文提出一种非带隙基准电路,通过一个带超级源极跟随器的预调制电路提供一个稳定的电压,为基准核心电路供电。超级源极跟随器通过降低基准核心电路电源端的对地阻抗,有效提高了基准电路的电源抑制能力。该基准电路采用0.35 m CMOS 工艺设计并流片,测试结果表明,该电路的工作电源电压为1.8~5 V,静态电流约为13 A。低频处电源抑制比(PSRR)约等于-100 dB,在小于1 kHz频率范围内PSRR均优于-93 dB。并且其片上面积仅为0.013 mm2。
  • GRAY P R, HURST P, MEYER R G, et al. Analysis and Design of Analog Integrated Circuits[M]. New Jersey, USA. Wiley, 1990: 201-300.
    ZHU Y, LIU F, YANG Y, et al. A -115 dB PSRR CMOS bandgap reference with a novel voltage self-regulating technique[C]. 2014 IEEE Proceedings of the Custom Integrated Circuits Conference (CICC), San Jose, CA, USA, 2014: 1-4. doi: 10.1109/CICC.2014.6946006.
    BASYURT P B and AKSIN D Y. A compact curvature corrected bandgap reference in 0.35m CMOS process[J]. Analog Integrated Circuits and Signal Processing, 2015, 83(1): 65-73. doi: 10.1007/s10470-015-0503-5.
    WANG B, LAW M K, and BERMAK A. A precision CMOS voltage reference exploiting silicon bandgap narrowing effect [J]. IEEE Transactions on Electron Devices, 2015, 62(7): 2128-2135. doi: 10.1109/TED.2015.2434495.
    CHAHARDORI M, ATARODI M, and SHARIFKHANI M. A sub 1V high PSRR CMOS bandgap voltage reference[J]. Microelectronics Journal, 2011, 42(9): 1057-1065. doi: 10.1016/j.mejo.2011.06.010.
    CAI C, SONG S X, LUO Y, et al. A high accuracy low-power bandgap voltage reference with trimming[C]. 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Guilin, China. 2014: 1-4. doi: 10.1109/ICSICT.2014.7021565.
    LAM Y H and KI W H. CMOS bandgap references with self- biased symmetrically matched currentvoltage mirror and extension of sub-1-V design[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2010, 18(6): 857-865. doi: 10.1109/TVLSI.2009.2016204.
    COLOMBO D M, WIRTH G, and BAMPI S. Sub-1 V band-gap based and MOS threshold-voltage based voltage references in 0.13m CMOS[J]. Analog Integrated Circuits and Signal Processing, 2015, 82(1): 25-37. doi: 10.1007/ s10470-014-0343-8.
    LEUNG K N and MOK P K T. A CMOS voltage reference based on weighted VGS for CMOS low-dropout linear regulators[J]. IEEE Journal of Solid-State Circuits, 2003, 38(1): 146-150. doi: 10.1109/JSSC.2002.806265.
    CAJUEIRO J P C. Tracking-Vgs: a temperature compensation technique to implement all-MOS reference voltages[C]. Proceedings of the 6th International Caribbean Conference on Devices, Circuits and Systems, Playa del Carmen, Mxico, 2006: 287-291. doi: 10.1109/ICCDCS.2006.250875.
    CHANG S I, ALASHMOUNY K, and YOON E. A 1.5 V 120 nW CMOS programmable monolithic reference generator for wireless implantable system[C]. 2011 Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), Boston, MA, USA, 2011: 2981-2984. doi: 10.1109/IEMBS.2011.6090818.
    ZHOU Z, ZHU P, SHI Y, et al. A resistorless CMOS voltage reference based on mutual compensation of VT and VTH[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, 60(9): 582-586. doi: 10.1109/TCSII.2013. 2268639.
    CHOUHAN S S and HALONEN K. Design and implementation of a micro-power CMOS voltage reference circuit based on thermal compensation of Vgs[J]. Microelectronics Journal, 2015, 46(1): 36-42. doi: 10.1016/j.mejo.2014.09.015.
    CHOUHAN S S and HALONEN K. Design and implementation of all MOS micro-power voltage reference circuit[J]. Analog Integrated Circuits and Signal Processing, 2014, 80(3): 399-406. doi: 10.1007/s10470-014-0361-6.
    CHOUHAN S S and HALONEN K. A simple all MOS voltage reference for RFID applications[C]. 2013 IEEE NORCHIP Conference, Vilnius, Lithuania, 2013: 1-3. doi: 10.1109/NORCHIP.2013.6702027.
    ROH H D, ROH J, and DUAN D Q Z. All mos transistors bandgap reference using chopper stabilization technique[C]. 2010 International SoC Design Conference (ISOCC), Incheon, South Korea, 2010: 353-357. doi: 10.1109/SOCDC.2010. 5682897.
    TAN X L, CHONG S S, CHAN P K, et al. A LDO regulator with weighted current feedback technique for 0.47 nF-10 nF capacitive load[J]. IEEE Journal of Solid-State Circuits, 2014, 49(11): 2658-2672. doi: 10.1109/JSSC.2014.2346762.
    FILANOVSKY I M and ALLAM A. Mutual compensation of mobility and threshold voltage temperature effects with application in CMOS circuits[J]. IEEE Journal of Solid-State Circuits, 2001, 48(7): 876-884. doi: 10.1109/81.933328.
  • 加载中
计量
  • 文章访问数:  1975
  • HTML全文浏览量:  161
  • PDF下载量:  582
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-09
  • 修回日期:  2016-03-25
  • 刊出日期:  2016-08-19

目录

    /

    返回文章
    返回