高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用时域联合稀疏恢复的多输入多输出水声信道压缩感知估计

周跃海 吴燕艺 陈东升 童峰

周跃海, 吴燕艺, 陈东升, 童峰. 采用时域联合稀疏恢复的多输入多输出水声信道压缩感知估计[J]. 电子与信息学报, 2016, 38(8): 1920-1927. doi: 10.11999/JEIT151158
引用本文: 周跃海, 吴燕艺, 陈东升, 童峰. 采用时域联合稀疏恢复的多输入多输出水声信道压缩感知估计[J]. 电子与信息学报, 2016, 38(8): 1920-1927. doi: 10.11999/JEIT151158
ZHOU Yuehai, WU Yanyi, CHEN Dongsheng, TONG Feng. Compressed Sensing Estimation of Underwater Acoustic MIMO Channels Based on Temporal Joint Sparse Recovery[J]. Journal of Electronics & Information Technology, 2016, 38(8): 1920-1927. doi: 10.11999/JEIT151158
Citation: ZHOU Yuehai, WU Yanyi, CHEN Dongsheng, TONG Feng. Compressed Sensing Estimation of Underwater Acoustic MIMO Channels Based on Temporal Joint Sparse Recovery[J]. Journal of Electronics & Information Technology, 2016, 38(8): 1920-1927. doi: 10.11999/JEIT151158

采用时域联合稀疏恢复的多输入多输出水声信道压缩感知估计

doi: 10.11999/JEIT151158
基金项目: 

国家自然科学基金(11274259, 11574258),福建省自然科学基金(2015J01172)

Compressed Sensing Estimation of Underwater Acoustic MIMO Channels Based on Temporal Joint Sparse Recovery

Funds: 

The National Natural Science Foundation of China (11274259, 11574258), The Natural Science Foundation of Fujian Province, China (2015J01172)

  • 摘要: 多输入多输出(MIMO)水声通信技术可以在极其有限的水声信道频带资源内提高信道容量,但多径和同道干扰的同时存在,使传统信道估计算法如最小二乘算法、压缩感知估计算法的性能急剧下降。考虑到通信数据块间水声信道多径结构存在一定的相关性,该文利用这种数据块间多径结构的时间域相关性建立水声MIMO信道的时域联合稀疏模型,并利用同步正交匹配追踪算法进行多个数据块联合稀疏恢复信道估计,提高MIMO信道多径稀疏位置的检测增益并抑制同道干扰,提高水声MIMO信道的估计性能。仿真和MIMO水声通信海试实验表明了所提方法的有效性。
  • RAFATI A, LOU H, and XIAO C. Soft-decision feedback turbo equalization for LDPC-coded MIMO underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2014, 39(1): 90-99. doi: 10.1109/JOE.2013. 2241933.
    LING J, TAN X, YARDIBI T, et al. On Bayesian channel estimation and FFT-based symbol detection in MIMO underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2014, 39(1): 59-73. doi: 10.1109/JOE. 2012.2234893.
    YANG Z and ZHENG Y R. Robust adaptive channel estimation in MIMO underwater acoustic communications[C]. OCEANS 2014, Taipei, 2014: 1-6. doi: 10.1109/OCEANS- TAIPEI.2014.6964573.
    YANG Z and ZHENG Y R. Iterative channel estimation and turbo equalization for multiple-input multiple-output underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2015, 41(1): 232-242. doi: 10.1109/JOE. 2015.2398731.
    王彪, 支志福, 戴跃伟. 移动水声通信多径传输非一致多普勒估计方法研究[J]. 电子与信息学报, 2015, 37(3): 733-738. doi: 10.11999/JEIT140665.
    WANG Biao, ZHI Zhifu, DAI Yuewei. Study on non-uniform doppler estimation for underwater acoustic mobile communications with multipath transmission[J]. Journal of Electronics Information Technology, 2015, 37(3): 733-738. doi: 10.11999/JEIT140665.
    SONG A, BADIEY M, MCDONAL V K, et al. Time reversal receivers for high data rate acoustic multiple-input-multiple- ouput communication[J]. IEEE Journal of Oceanic Engineering, 2011, 36(4): 525-538. doi: 10.1109/JOE.2011. 2166660.
    SONG A, ABDI A, BADIEY M, et al. Experimental demonstration of underwater acoustic communication by vector sensors[J]. IEEE Journal of Oceanic Engineering, 2011, 36(3): 454-461. doi: 10.1109/JOE.2011.2133050.
    BARON D, WAKIN M B, DUARTE M F, et al. Distributed compressed sensing[J]. Preprint, 2012, 22(10): 2729-2732.
    CHENG P, CHEN Z, RUI Y, et al. Channel estimation for OFDM systems over doubly selective channels: A distributed compressive sensing based approach[J]. IEEE Transactions on Communications, 2013, 61(10): 4173-4185. doi: 10.1109/ TCOMM.2013.072813.120758.
    胡海峰, 杨震. 无线传感器网络中基于空间相关性的分布式压缩感知[J]. 南京邮电大学学报(自然科学版), 2009, 29(6): 12-16.
    HU Haifeng and YANG Zhen. Spatial correlation-based distributed compressed sensing in wireless sensor networks[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2009, 29(6): 12-16.
    CORROY S and MATHAR R. Distributed compressed sensing for the MIMO MAC with correlated sources[C]. 2012 IEEE International Conference on Communications (ICC), Ottawa, 2012: 2516-2520. doi: 10.1109/ICC.2012.6363969.
    Wang D H, Kai N I U, He Z Q, et al. Channel estimation based on distributed compressed sensing in amplify-and- forward relay networks[J]. The Journal of China Universities of Posts and Telecommunications, 2010, 17(5): 44-49. doi: 10.1016/S1005-8885(09)60506-9.
    周跃海, 伍飞云, 童峰. 水声多输入多输出信道的分布式压缩感知估计[J]. 声学学报, 2015, 40(4): 519-528. doi: 10.3969/ j.issn.1000-1093.2015.12.015.
    ZHOU Yuehai, WU Feiyun, and TONG Feng. Distributed compressed sensing estimation of underwater acoustic multiple-input-multiple-ouputchannels[J]. Acta Acustica, 40(4): 519-528. doi: 10.3969/j.issn.1000-1093. 2015.12.015.
    叶新荣, 朱卫平, 张爱清, 等. OFDM 系统双选择性慢衰落信道的压缩感知估计[J]. 电子与信息学报, 2015, 37(1): 169-174. doi: 10.11999/JEIT140247.
    YE Xinrong, ZHU Weiping, ZHANG Aiqing, et al. Compressed sensing based on doubly-selective slow-fading channel estimation in OFDM systems[J]. Journal of Electronics Information Technology, 2015, 37(1): 169-174. doi: 10.11999/JEIT140247.
    童峰, 许肖梅, 方世良, 等. 改进支持向量机和常数模算法水声信道盲均衡[J]. 声学学报, 2012, 37(2): 143-150.
    TONG Feng, XU Xiaomei, FANG Shiliang, et al. Blind equalization of underwater acoustic channels based on modified support vector machine and constant modulus algorithm[J]. Acta Acustica, 2012, 37(2): 143-150.
  • 加载中
计量
  • 文章访问数:  1369
  • HTML全文浏览量:  134
  • PDF下载量:  493
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-16
  • 修回日期:  2016-04-27
  • 刊出日期:  2016-08-19

目录

    /

    返回文章
    返回