高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应截断策略的约束多目标优化算法

毕晓君 张磊

毕晓君, 张磊. 基于自适应截断策略的约束多目标优化算法[J]. 电子与信息学报, 2016, 38(8): 2047-2053. doi: 10.11999/JEIT151237
引用本文: 毕晓君, 张磊. 基于自适应截断策略的约束多目标优化算法[J]. 电子与信息学报, 2016, 38(8): 2047-2053. doi: 10.11999/JEIT151237
BI Xiaojun, ZHANG Lei. Constrained Multi-objective Optimization Algorithm with Adaptive Truncation Strategy[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2047-2053. doi: 10.11999/JEIT151237
Citation: BI Xiaojun, ZHANG Lei. Constrained Multi-objective Optimization Algorithm with Adaptive Truncation Strategy[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2047-2053. doi: 10.11999/JEIT151237

基于自适应截断策略的约束多目标优化算法

doi: 10.11999/JEIT151237
基金项目: 

国家自然科学基金资助项目(61175126)

Constrained Multi-objective Optimization Algorithm with Adaptive Truncation Strategy

Funds: 

The National Natural Science Foundation of China (61175126)

  • 摘要: 为提高约束多目标优化问题所求解集的分布性和收敛性,该文提出基于自适应截断策略的约束多目标优化算法。首先,自适应截断选择策略能够保留Pareto最优解和约束违反度及目标函数值均较优的不可行解,不仅提高了种群多样性,而且能够较好地兼顾多样性和收敛性;其次,为增强算法的局部开发能力,在变异操作和交叉操作之后进行指数变异;最后,改进的拥挤密度估计方式只选择一部分Pareto最优解和距离较近的个体参与计算,不仅更加准确地反映解集的分布性,而且降低了计算量。通过在标准测试问题(CTP系列)上与其他4种优秀算法的对比结果可以得出,该算法所求解集的分布性和收敛性均得到一定提高,而且相较于对比算法在求解性能上具备一定的优势。
  • WEI H. Design exploration of three-dimensional transverse jet in a supersonic crossflow based on data mining and multi-objective design optimization approaches[J]. International Journal of Hydrogen Energy, 2014, 39(8): 3914-3925. doi: 10.1016/j.ijhydene.2013.12.129.
    ABDELKHALEK O, KRICHEN S, and GUITOUNI A. A genetic algorithm based decision support system for the multi-objective node placement problem in next wireless generation network[J]. Applied Soft Computing, 2015, 33(8): 278-291. doi: 10.1016/j.asoc.2015.03.034.
    PARENTE M, CORTEZ P, and CORREIA A G. An evolutionary multi-objective optimization system for earthworks[J]. Expert Systems with Applications, 2015, 42(19): 6674-6685.
    GRASSO R, COCOCCIONI M, MOURRE B, et al. A decision support system for optimal deployment of sonobuoy networks based on sea current forecasts and multi-objective evolutionary optimization[J]. Expert Systems with Applications, 2013, 40(10): 3886-3899. doi: 10.1016/j.eswa. 2012.12.080.
    孟红云, 张小华, 刘三阳. 用于约束多目标优化问题的双种群差分进化算法[J]. 计算机学报, 2008, 31(2): 229-235.
    MENG Hongyun, ZHANG Xiaohua, and LIU Sanyang. A differential evolution based on double population for constrained multi-objective optimization problems[J]. Chinese Journal of Computers, 2008, 31(2): 229-235.
    WOLDESENBET Y G, YEN G G, and TESSEMA B G. Constraint handling in multi-objective evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(3): 514-525. doi: 10.1109/TEVC. 2008.2009032.
    张勇, 巩敦卫, 任永强, 等. 用于约束优化的简洁多目标微粒群优化算法.电子学报, 2011, 39(6): 1437-1440.
    ZHANG Yong, GONG Dunwei, REN Yongqiang, et al. Barebones multi-objective particle swarm optimizer for constrained optimization problems[J]. Acta Electronica Sinica, 2011, 39(6): 1437-1440.
    LONG Q. A constraint handling technique for constrained multi-objective genetic algorithm[J]. Swarm and Evolutionary Computation, 2014, 15(4): 66-79. doi: 10.1016/j. swevo.2013.12.002.
    GAO W F, YEN G G, and LIU S Y. A dual-population differential evolution with coevolution for constrained optimization[J]. IEEE Transactions on Cybernetics, 2015, 45(5): 1094-1107. doi: 10.1109/TCYB.2014.2345478.
    JAN M A and KHANUM R A. A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D[J]. Applied Soft Computing, 2013, 13(1): 128-148. doi: 10.1016/j.asoc.2012.07.027.
    毕晓君, 王珏, 李博, 等. 基于动态迁移的约束生物地理学优化算法[J]. 计算机研究与发展, 2014, 3(3): 580-589.
    BI Xiaojun, WANG Jue, LI Bo, et al. An constrained biogeography-based optimization with dynamic migration[J] Journal of Computer Research and Development, 2014, 3(3): 580-589. [12] 邹德旋, 高立群, 段纳. 用修正的差分进化算法确定光电模型参数[J]. 电子与信息学报, 2014, 36(10): 2521-2525. doi: 10.3724/ SP.J.1146.2013.01858.
    ZOU Dexuan, GAO Liqun, and DUAN Na. Determining the parameters of photovoltaic modules by a modified differential evolution algorithm[J]. Journal of Electronics Information Technology, 2014, 36(10): 2521-2525. doi: 10.3724/SP.J. 1146.2013.01858.
    TAN Y Y, JIAO Y C, LI H, et al. A modification to MOEA/D-DE for multi-objective optimization problems with complicated Pareto sets[J]. Information Sciences, 2012, 213(23): 14-38.
    DEB K and JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601. doi: 10.1109/TEVC. 2013.2281535.
    DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
  • 加载中
计量
  • 文章访问数:  1157
  • HTML全文浏览量:  143
  • PDF下载量:  389
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-05
  • 修回日期:  2016-03-17
  • 刊出日期:  2016-08-19

目录

    /

    返回文章
    返回