LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
|
DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005: 886-893.
|
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. Advances in Neural Information Processing Systems, South Lake Tahoe, Nevada, US, 2012: 1097-1105.
|
DATAR M, IMMORLICA N, INDYK P, et al. Locality sensitive hashing scheme based on p-stable distributions[C]. Proceedings of the ACM Symposium on Computational Geometry, New York, USA, 2004: 253-262.
|
ZHANG Lei, ZHANG Yongdong, ZHANG Dongming, et al. Distribution-aware locality sensitive hashing[C]. 19th International Conference on Multimedia Modeling, Huangshan, China, 2013: 395-406.
|
KONG Weihao and LI Wujun. Isotropic hashing[C]. Advances in Neural Information Processing Systems, South Lake Tahoe, Nevada, US, 2012: 1646-1654.
|
WEISS Y, TORRALBA A, and FERGUS R. Spectral hashing[C]. Advances in Neural Information Processing Systems, Vancouver, Canada, 2009: 1753-1760.
|
GONG Yunchao, LAZEBNIK S, GORDO A, et al. Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(12): 2916-2929.
|
WANG Jun, KUMAR S, and CHANG Shihfu. Semi-Supervised hashing for large scale search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(12): 2393-2406.
|
KULIS B and DARRELL T. Learning to hash with binary reconstructive embeddings[C]. Advances in Neural Information Processing Systems, Vancouver, Canada, 2009: 1042-1052.
|
LIU Wei, WANG Jun, JI Rongrong, et al. Supervised hashing with kernels[C]. Computer Vision and Pattern Recognition, Providence, RI, 2012: 2074-2081.
|
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Computer Vision and Pattern Recognition, Ohio, Columbus, 2014: 580-587.
|
OQUAB M, BOTTOU L, LAPTEV I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]. Computer Vision and Pattern Recognition, Ohio, Columbus, 2014: 1717-1724.
|
RAZAVIAN A, AZIZPOUR H, SULLIVAN J, et al. CNN features off-the-shelf: an astounding baseline for recognition[C]. Computer Vision and Pattern Recognition, Ohio, Columbus, 2014: 806-813.
|
XIA Rongkai, PAN Yan, LAI Hanjiang, et al. Supervised hashing for image retrieval via image representation learning[C]. Proceedings of the AAAI Conference on Artificial Intelligence, Qubec, Canada, 2014: 2156-2162.
|
LAI Hanjiang, PAN Yan, LIU Ye, et al. Simultaneous feature learning and hash coding with deep neural networks[C]. Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 3270-3278.
|
LIN K, YANG H F, HSIAO J H, et al. Deep learning of binary hash codes for fast image retrieval[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 27-35.
|
GIONIS A, INDYK P, and MOTWANI R. Similarity search in high dimensions via hashing[C]. Proceedings of the International Conference on Very Large Data Bases, Edinburgh, Scotland, UK, 1999: 518-529.
|
KRIZHEVSKY A and HINTON G. Learning multiple layers of features from tiny images[R]. Technical Report, University of Toronto, 2009.
|
CHUA TatSeng, TANG Jinhui, HONG Richang, et al. NUS-WIDE: A real-world Web image database from national university of singapore[C]. Proceedings of the ACM International Conference on Image and Video Retrieval, Greece, 2009: 48.
|
LIU Wei, WANG Jun, Kumar Sanjiv, et al. Hashing with graphs[C]. Proceedings of the 28th International Conference on Machine Learning, Bellevue, Washington, USA, 2011: 1-8.
|