高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度卷积神经网络和二进制哈希学习的图像检索方法

彭天强 栗芳

彭天强, 栗芳. 基于深度卷积神经网络和二进制哈希学习的图像检索方法[J]. 电子与信息学报, 2016, 38(8): 2068-2075. doi: 10.11999/JEIT151346
引用本文: 彭天强, 栗芳. 基于深度卷积神经网络和二进制哈希学习的图像检索方法[J]. 电子与信息学报, 2016, 38(8): 2068-2075. doi: 10.11999/JEIT151346
PENG Tianqiang, LI Fang. Image Retrieval Based on Deep Convolutional NeuralNetworks and Binary Hashing Learning[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2068-2075. doi: 10.11999/JEIT151346
Citation: PENG Tianqiang, LI Fang. Image Retrieval Based on Deep Convolutional NeuralNetworks and Binary Hashing Learning[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2068-2075. doi: 10.11999/JEIT151346

基于深度卷积神经网络和二进制哈希学习的图像检索方法

doi: 10.11999/JEIT151346
基金项目: 

国家自然科学基金(61301232)

Image Retrieval Based on Deep Convolutional NeuralNetworks and Binary Hashing Learning

Funds: 

The National Natural Science Foundation of China (61301232)

  • 摘要: 随着图像数据的迅猛增长,当前主流的图像检索方法采用的视觉特征编码步骤固定,缺少学习能力,导致其图像表达能力不强,而且视觉特征维数较高,严重制约了其图像检索性能。针对这些问题,该文提出一种基于深度卷积神径网络学习二进制哈希编码的方法,用于大规模的图像检索。该文的基本思想是在深度学习框架中增加一个哈希层,同时学习图像特征和哈希函数,且哈希函数满足独立性和量化误差最小的约束。首先,利用卷积神经网络强大的学习能力挖掘训练图像的内在隐含关系,提取图像深层特征,增强图像特征的区分性和表达能力。然后,将图像特征输入到哈希层,学习哈希函数使得哈希层输出的二进制哈希码分类误差和量化误差最小,且满足独立性约束。最后,给定输入图像通过该框架的哈希层得到相应的哈希码,从而可以在低维汉明空间中完成对大规模图像数据的有效检索。在3个常用数据集上的实验结果表明,利用所提方法得到哈希码,其图像检索性能优于当前主流方法。
  • LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
    DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005: 886-893.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. Advances in Neural Information Processing Systems, South Lake Tahoe, Nevada, US, 2012: 1097-1105.
    DATAR M, IMMORLICA N, INDYK P, et al. Locality sensitive hashing scheme based on p-stable distributions[C]. Proceedings of the ACM Symposium on Computational Geometry, New York, USA, 2004: 253-262.
    ZHANG Lei, ZHANG Yongdong, ZHANG Dongming, et al. Distribution-aware locality sensitive hashing[C]. 19th International Conference on Multimedia Modeling, Huangshan, China, 2013: 395-406.
    KONG Weihao and LI Wujun. Isotropic hashing[C]. Advances in Neural Information Processing Systems, South Lake Tahoe, Nevada, US, 2012: 1646-1654.
    WEISS Y, TORRALBA A, and FERGUS R. Spectral hashing[C]. Advances in Neural Information Processing Systems, Vancouver, Canada, 2009: 1753-1760.
    GONG Yunchao, LAZEBNIK S, GORDO A, et al. Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(12): 2916-2929.
    WANG Jun, KUMAR S, and CHANG Shihfu. Semi-Supervised hashing for large scale search[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(12): 2393-2406.
    KULIS B and DARRELL T. Learning to hash with binary reconstructive embeddings[C]. Advances in Neural Information Processing Systems, Vancouver, Canada, 2009: 1042-1052.
    LIU Wei, WANG Jun, JI Rongrong, et al. Supervised hashing with kernels[C]. Computer Vision and Pattern Recognition, Providence, RI, 2012: 2074-2081.
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Computer Vision and Pattern Recognition, Ohio, Columbus, 2014: 580-587.
    OQUAB M, BOTTOU L, LAPTEV I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]. Computer Vision and Pattern Recognition, Ohio, Columbus, 2014: 1717-1724.
    RAZAVIAN A, AZIZPOUR H, SULLIVAN J, et al. CNN features off-the-shelf: an astounding baseline for recognition[C]. Computer Vision and Pattern Recognition, Ohio, Columbus, 2014: 806-813.
    XIA Rongkai, PAN Yan, LAI Hanjiang, et al. Supervised hashing for image retrieval via image representation learning[C]. Proceedings of the AAAI Conference on Artificial Intelligence, Qubec, Canada, 2014: 2156-2162.
    LAI Hanjiang, PAN Yan, LIU Ye, et al. Simultaneous feature learning and hash coding with deep neural networks[C]. Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 3270-3278.
    LIN K, YANG H F, HSIAO J H, et al. Deep learning of binary hash codes for fast image retrieval[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 27-35.
    GIONIS A, INDYK P, and MOTWANI R. Similarity search in high dimensions via hashing[C]. Proceedings of the International Conference on Very Large Data Bases, Edinburgh, Scotland, UK, 1999: 518-529.
    KRIZHEVSKY A and HINTON G. Learning multiple layers of features from tiny images[R]. Technical Report, University of Toronto, 2009.
    CHUA TatSeng, TANG Jinhui, HONG Richang, et al. NUS-WIDE: A real-world Web image database from national university of singapore[C]. Proceedings of the ACM International Conference on Image and Video Retrieval, Greece, 2009: 48.
    LIU Wei, WANG Jun, Kumar Sanjiv, et al. Hashing with graphs[C]. Proceedings of the 28th International Conference on Machine Learning, Bellevue, Washington, USA, 2011: 1-8.
  • 加载中
计量
  • 文章访问数:  2200
  • HTML全文浏览量:  214
  • PDF下载量:  1322
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-01
  • 修回日期:  2016-04-29
  • 刊出日期:  2016-08-19

目录

    /

    返回文章
    返回