高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷达高分辨率紧凑感知矩阵追踪算法

刘静 盛明星 宋大伟 尚社 韩崇昭

王鹏, 邱天爽, 任福全, 李景春, 谭海峰. 对称稳定分布噪声下基于广义相关熵的DOA估计新方法[J]. 电子与信息学报, 2016, 38(8): 2007-2013. doi: 10.11999/JEIT151217
引用本文: 刘静, 盛明星, 宋大伟, 尚社, 韩崇昭. 雷达高分辨率紧凑感知矩阵追踪算法[J]. 电子与信息学报, 2016, 38(8): 1950-1955. doi: 10.11999/JEIT151135
WANG Peng, QIU Tianshuang, REN Fuquan, LI Jingchun, TAN Haifeng. A Novel Generalized Correntropy Based Method for Direction of Arrival Estimation in Symmetric Alpha Stable Noise Environments[J]. Journal of Electronics & Information Technology, 2016, 38(8): 2007-2013. doi: 10.11999/JEIT151217
Citation: LIU Jing, SHENG Mingxing, SONG Dawei, SHANG She, HAN Chongzhao. Compact Sensing Matrix Pursuit Algorithm for Radars with High Resolution[J]. Journal of Electronics & Information Technology, 2016, 38(8): 1950-1955. doi: 10.11999/JEIT151135

雷达高分辨率紧凑感知矩阵追踪算法

doi: 10.11999/JEIT151135
基金项目: 

CAST创新基金(J20141110),国家自然科学基金(61573276),国家973计划(2013CB329405)

Compact Sensing Matrix Pursuit Algorithm for Radars with High Resolution

Funds: 

The Innovation Foundation of CAST (J20141110), The National Natural Science Foundation of China (61573276), The National 973 Program of China (2013CB329405)

  • 摘要: 针对压缩感知雷达的感知矩阵相干系数随分辨率增加而增大以致不能以大概率对稀疏向量进行完美重构的问题,直接基于原始感知矩阵,提出紧凑感知矩阵追踪(CSMP)算法。该文将CSMP算法应用于十字阵雷达的2维波达方向(DOA)估计并进行了计算机仿真。仿真结果表明与多信号分类(MUSIC)算法,子空间追踪(SP)算法,基追踪(BP)算法和稀疏贝叶斯学习(SBL)算法相比,基于CSMP算法的DOA估计分辨率得到了较大提高。
  • DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109 /TIT.2006.871582.
    ZEINALKHANI C and BANIHASHEMI A H. Iterative reweighted l2/l1 recovery algorithms for compressed sensing of block sparse signals[J]. IEEE Transactions on Signal Processing, 2015, 63(17): 4516-4531. doi: 10.1109/TSP.2015. 2441032.
    BARANIUK R and STEEGHS P. Compressive radar imaging[C]. IEEE Radar Conference, Boston, 2007: 128-133. doi: 10.1109/RADAR.2007.374203.
    BAR-ILAN O and ELDAR Y C. Sub-Nyquist radar via doppler focusing[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1796-1811. doi: 10.1109/TSP.2014.2304917.
    LI Hongtao, WANG Chaoyu, WANG Ke, et al. High resolution range profile of compressive sensing radar with low computational complexity[J]. IET Radar, Sonar and Navigation, 2015, 9(8): 984-990. doi: 10.1049/iet-rsn.2014. 0454.
    BOURGAIN J, DILWORTH S, FORD K, et al. Explicit constructions of RIP matrices and related problems[J]. Duke Mathematical Journal, 2011, 159(1): 145-185. doi: 10.1215/ 00127094-1384809.
    CHEN C and VAIDYANATHAN P. Compressed sensing in MIMO radar[C]. Asilomar Conference on Signal, Systems and Computers, Piscataway, 2008: 41-44.
    SONG Xiaofeng, ZHOU Shengli, and WILLETT P. The role of the ambiguity function in compressed sensing radar[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Dallas, 2010: 2758-2761. doi: 10.1109/ ICASSP.2010.5496221.
    王超宇, 梅湄, 朱晓华, 等. 一种稳健的盲稀疏度压缩感知雷达目标参数估计方法[J]. 电子与信息学报, 2014, 36(4): 960-966. doi: 10.3724/SP.J.1146.2013.01007.
    WANG Chaoyu, MEI Mei, ZHU Xiaohua, et al. A robust
    blind sparsity target parameter estimation algorithm for compressive sensing radar[J]. Journal of Electronics Information Technology, 2014, 36(4): 960-966. doi: 10.3724/ SP.J.1146.2013.01007.
    KIM Y G and LEE M J. Scheduling multi-channel and multi-timeslot in time constrained wireless sensor networks via simulated annealing and particle swarm optimization[J]. IEEE Communications Magazine, 2014, 52(1): 122-129.
    SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280. doi: 10.1109/TAP. 1986.1143830.
    DAI W and MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249. doi: 10.1109/TIT.2009.2016006
    ZHU Hao, GEERT L, and GEORGIOS G. Sparsity-cognizant total least-squares for perturbed compressive sampling[J]. IEEE Transactions on Signal Processing, 2011, 59(5): 2002-2016. doi: 10.1109/TSP.2011.2109956.
    JI Shihao, XUE Ya, and CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346-2356. doi: 10.1109/TSP.2007.914345.
    EVERITT B, LANDAU S, and LEESE M. Cluster Analysis[M]. London: Edward Arnold, 2001: 121-134.
    DONOHO D L, ELAD M, and TEMLYAKOV V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 51(1): 6-18. doi: 10.1109/TIT.2005.860430.
    林波, 张增辉, 朱炬波. 基于压缩感知的DOA估计稀疏化模型与性能分析[J]. 电子与信息学报, 2014, 36(3): 589-594. doi: 10.3724/SP.J.1146.2013.00149.
    LIN Bo, ZHANG Zenghui, and ZHU Jubo. Sparsity model and performance analysis of DOA estimation with compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(3): 589-594. doi: 10.3724/SP.J.1146. 2013.00149.
  • 期刊类型引用(7)

    1. 刘亚春,王祎鸣,杨俊钢. 基于频谱细化和二阶同步压缩变换的船载地波雷达目标检测方法. 海洋科学进展. 2024(01): 116-125 . 百度学术
    2. 李发瑞,纪永刚,任继红,程啸宇,王心玲. 基于SET-CNN的紧凑型地波雷达弱目标检测方法. 海洋科学进展. 2023(04): 753-764 . 百度学术
    3. 李会勇,薛长飘,陈卓,胡进峰,姚冯. 基于Hankel矩阵分解的天波超视距雷达机动目标检测算法. 电子与信息学报. 2018(03): 541-547 . 本站查看
    4. 李庆忠,周祥振,黎明,牛炯. 基于时频分析的海杂波背景下舰船目标检测. 计算机应用研究. 2018(01): 52-55+61 . 百度学术
    5. 张冰瑞,雷志勇,周海峰,周毅. 基于HHT的高频雷达机动目标参数估计. 系统工程与电子技术. 2018(03): 546-551 . 百度学术
    6. 刘子威,苏洪涛,胡勤振. 天波超视距雷达中瞬态干扰定位方法研究. 电子与信息学报. 2016(10): 2482-2487 . 本站查看
    7. 胡进峰,薛长飘,李会勇,谢菊兰. 基于最大似然法的天波超视距雷达相位解污染算法. 电子与信息学报. 2016(12): 3197-3204 . 本站查看

    其他类型引用(4)

  • 加载中
计量
  • 文章访问数:  1332
  • HTML全文浏览量:  176
  • PDF下载量:  386
  • 被引次数: 11
出版历程
  • 收稿日期:  2015-10-10
  • 修回日期:  2016-04-22
  • 刊出日期:  2016-08-19

目录

    /

    返回文章
    返回