PECORA L M and CARROLL T L. Synchronization in chaotic systems [J]. Physical Review Letters, 1990, 64(8): 821-824. doi: 10.1103/PhysRevLett.64.821.
|
SUN Zhiyong, SI Gangquan, MIN Fuhong, et al. Adaptive modified function projective synchronization and parameter identification of uncertain hyperchaotic (chaotic) systems with identical or non-identical structures[J]. Nonlinear Dynamics, 2012, 68(4): 471-486. doi: 10.1007/s11071-011-0230-0.
|
ZHANG Fangfang. Lag synchronization of complex Lorenz system with applications to communication[J]. Entropy, 2015, 17(7): 4974-4985. doi: 10.3390/e17074974.
|
禹思敏, 吕金虎, 李澄清. 混沌密码及其在多媒体保密通信中应用的进展[J]. 电子与信息学报, 2016, 38(3): 735-752. doi: 10.11999/JEIT151356.
|
YU Simin, L Jinhu, and LI Chengqing. Some progresses of chaotic cipher and its applications in multimedia secure communications[J]. Journal of Electronics Information Technology, 2016, 38(3): 735-752. doi: 10.11999/JEIT151356.
|
于海涛, 王江. 基于反演自适应动态滑模的FitzHugh- Nagumo神经元混沌同步控制[J]. 物理学报, 2013, 62(17): 170511. doi: 10.7498/aps.62.170511.
|
YU Haitao and WANG Jiang. Chaos synchronization of FitzHugh-Nagumo neurons via backstepping and adptive dynamical sliding mode control[J]. Acta Physica Sinica, 2013, 62(17): 170511. doi: 10.7498/aps.62.170511.
|
张友安, 余名哲, 耿宝亮. 基于投影法的不确定分数阶混沌系统自适应同步[J]. 电子与信息学报, 2015, 37(2): 455-460. doi: 10.11999/JEIT140514.
|
ZHANG Youan, YU Mingzhe, and GENG Baoliang. Adaptive synchronization of uncertain fractional-order chaotic systems based on projective method[J]. Journal of Electronics Information Technology, 2015, 37(2): 455-460. doi: 10.11999/ JEIT140514.
|
MAHMOUD G M, BOUNTIS T, ABDEL-LATIF G M, et al. Chaos synchronization of two different chaotic complex Chen and L systems[J]. Nonlinear Dynamics, 2008, 55(1): 43-53. doi: 10.1007/s11071-008-9343-5.
|
ZHOU Xiaobing, XIONG Lianglin, CAI Weiwei, et al. Adaptive synchronization and antisynchronization of a hyperchaotic complex Chen system with unknown parameters based on passive control[J]. Journal of Applied Mathematics, 2013, 23(1): 309-338. doi: 10.1155/2013/845253.
|
WANG Xingyuan and ZHANG Hao. Backstepping-based lag synchronization of a complex permanent magnet synchronous motor system[J]. Chinese Physics B, 2013, 22(4): 558-562. doi: 10.1088/1674-1056/22/4/048902.
|
MAHMOUD G M and MAHMOUD E E. Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems[J]. Nonlinear Dynamics, 2010, 61(1-2): 141-152. doi: 10.1007/s11071-009-9637-2.
|
WANG Shibing, WANG Xingyuan, and ZHOU Yufei. A memristor-based complex Lorenz system and its modified projective synchronization[J]. Entropy, 2015, 17(11): 7628-7644. doi: 10.3390/e17117628.
|
LIU Jian, LIU Shutang, and YUAN Chunhua. Adaptive complex modified projective synchronization of complex chaotic (hyperchaotic) systems with uncertain complex parameters[J]. Nonlinear Dynamics, 2015, 79(2): 1035-1047. doi: 10.1007/s11071-014-1721-6.
|
WANG Shibing, WANG Xingyuan, and HAN Bo. Complex generalized synchronization and parameter identification of nonidentical nonlinear complex systems[J]. PLoS One, 2016, 11(3): e0152099. doi: 10.1371/journal.Pone.0152099.
|
ZHOU Xiaobing, JIANG Murong, and HUANG Yaqun. Combination synchronization of three identical or different nonlinear complex hyperchaotic systems[J]. Entropy, 2013, 15(9): 3746-3761. doi: 10.3390/e15093746.
|
SUN Junwei, CUI, Guangzhao, WANG Yanfeng, et al. Combination complex synchronization of three chaotic complex systems[J]. Nonlinear Dynamics, 2015, 79(2): 953-965. doi: 10.1007/s11071-014-1714-5.
|
JIANG Cuimei, LIU Shutang, and WANG Da. Generalized combination complex synchronization for fractional-order chaotic complex systems[J]. Entropy, 2015, 17(8): 5199-5217. doi: 10.3390/e17085199.
|
LUO Runzi, WANG Yinglan, and DENG Shucheng. Combination synchronization of three classic chaotic systems using active backstepping design[J]. Chaos, 2011, 21(4): 043114. doi: 10.1063/1.3655366.
|
RULKOV N F, SUSHCHIK M M, TSIMRING L S, et al. Generalized synchronization of chaos in directionally coupled chaotic systems[J]. Physical Review E, 1995, 51(2): 980-994. doi: 10.1103/PhysRevE.51.980.
|