2018, 40(6): 1492-1498.
doi: 10.11999/JEIT170900
Abstract:
In order to obtain efficient information transmission, the existing compression algorithms reduce the compression ratio by increasing complexity. In view of this problem, an array configuration speedup model is proposed in this paper. It is proved that low compression ratio may not improve the transmission efficiency and the factors, decompression module throughput and data block compression rate which affect the efficiency of information transmission, are found. Combined the influencing factors with the configuration information, a new lossless compression method is designed and the decompression hardware circuit is implemented, whose throughput can reach 16.1 Gbps. The lossless compression algorithm is tested using AES, A5-1 and SM4. Compared with the mainstream lossless compression algorithms LZW, Huffman, LPAQ1 and Arithmetic, the results show that the overall compression ratio is equivalent. However, the compression ratio of data block generated by the compression algorithm is optimized, which can not only meet the demand of acceleration, but also possesses high throughput decompression performance. The configuration speedup ratio obtained by lossless compression algorithm is about 8%, 9%, 10% and 22% higher than LPAQl, Arithmetic, Huffman, and LZW with ideal hardware throughput.