Citation: | Lü Xiaoqi, WU Liang, GU Yu, ZHANG Ming, LI Jing. Low Dose CT Lung Denoising Model Based on Deep Convolution Neural Network[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1353-1359. doi: 10.11999/JEIT170769 |
张云逸. 低剂量CT图像的质量改善算法研究[D]. [硕士论文],郑州大学, 2015.
|
ZHANG Yunyi. Study of image quality improvement algorithm for low-dose CT[D]. [Master dissertation], Zhengzhou University, 2015.
|
刘光达, 赵立荣. 基于最小均方误差原理的医学X光影像滤波阈值选择[J]. 光学精密工程, 2001, 9(1): 47-50.
|
LIU Guangda and ZHAO Lirong. Threshold selection method for medical X-ray images filter based on minimum even- square error[J]. Optics and Precision Engineering, 2001, 9(1): 47-50.
|
SPERL J, BEQUE D, CLAUS B, et al. Computer-Assisted Scan Protocol and Reconstruction (CASPAR)-reduction of image noise and patient dose[J]. IEEE Transactions on Medical Imaging, 2010, 29(3): 724-732. doi: 10.1109/TMI. 2009.2034515.
|
代双凤, 吕科, 翟锐, 等. 基于3D区域增长法和改进的凸包算法相结合的全肺分割方法[J]. 电子与信息学报, 2016, 38(9): 2358-2364. doi: 10.11999/JEIT151365.
|
DAI Shuangfeng, L Ke, ZHAI Rui, et al. Lung segmentation method based on 3D region growing method and improved convex hull algorithm[J]. Journal of Electronics Information Technology, 2016, 38(9): 2358-2364. doi: 10.11999/JEIT151365.
|
徐玉风. 基于贝叶斯估计的低剂量CT图像去噪算法[D]. [硕士论文], 郑州大学, 2016.
|
XU Yufeng. The denoising algorithm of low-dose CT images based on bayesian estimation[D]. [Master dissertation], Zhengzhou University, 2016.
|
GREEN M, MAROM E M, KIRYATI N, et al. Efficient Low- Dose CT Denoising by Locally-Consistent Non-Local Means (LC-NLM)[M]. Heidelberg: Springer, 2016: 423-431. doi: 10.1007/978-3-319-46729-9_49.
|
SHANG Xiaobao, DING Yong, DENG Ruizhe, et al. A three- dimensional denoising method for low-dose computed tomography[J]. Journal of Medical Imaging Health Informatics, 2017, 7(1): 283-287. doi: 10. 1166/jmihi.2017. 2020.
|
毕一鸣. 低剂量CT图像恢复算法研究[D]. [硕士论文], 南方医科大学, 2010: 12-60.
|
BI Yiming. Image restoration for low-dose computed tomography[D]. [Master dissertation], Southern Medical University, 2010: 12-60.
|
ZHANG H, MA J, WANG J, et al. Statistical image reconstruction for low-dose CT using nonlocal means-based regularization. Part II: An adaptive approach[J]. Computerized Medical Imaging Graphics the Official Journal of the Computerized Medical Imaging Society, 2015, 43(6): 26-35. doi: 10.1016/j.compmedimag.2015.02.008.
|
朱永成, 陈阳, 罗立民, 等. 基于字典学习的低剂量X-ray CT图像去噪[J]. 东南大学学报(自然科学版), 2012, 42(5): 864-868. doi: 10.3969/j.issn.1001-0505.2012.05.013.
|
ZHU Yongcheng, CHEN Yang, LUO Limin, et al. Dictionary learning based denoising of low-dose X-ray CT image[J]. Journal of Southeast University(Natural Science Edition), 2012, 42(5): 864-868. doi: 10.3969/j.issn.1001-0505.2012.05. 013.
|
LORE K G, AKINTAYO A, and SARKAR S. LLNet: A deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2015, 61(1): 650-662. doi: 10.1016/j.patcog.2016.06.008.
|
LI H M. Deep learning for image denoising[J]. International Journal of Signal Processing Image Processing P, 2014, 3(7): 171-180. doi: 10.14257/ijsip.2014.7.3.14.
|
XIE J, XU L, and CHEN E. Image denoising and inpainting with deep neural networks[C]. International Conference on Neural Information Processing Systems, Harrahs, 2012, 1: 341-349.
|
李传朋, 秦品乐, 张晋京. 基于深度卷积神经网络的图像去噪研究[J]. 计算机工程, 2017, 43(3): 253-260. doi: 10.3969/j. issn.1000-3428.2017.03.042.
|
LI Chuanpeng, QIN Pinle, and ZHANG Jinjing. Research on image denoising based on deep convolutional neural network[J]. Computer Engineering, 2017, 43(3): 253-260. doi: 10.3969/j.issn.1000-3428.2017.03.042.
|
吕永标, 赵建伟, 曹飞龙. 基于复合卷积神经网络的图像去噪算法[J]. 模式识别与人工智能, 2017, 30(2): 97-105. doi: 10.16451/j.cnki.issn1003-6059.201702001.
|
L Yongbiao, ZHAO Jianwei, and CAO Feilong. Image denoising algorithm based on composite convolutional neural network[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(2): 97-105. doi: 10.16451/j.cnki.issn1003-6059. 201702001.
|
ZHANG K, ZUO W, CHEN Y, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising [J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155. doi: 10.1109/TIP.2017.2662206.
|
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. doi: 10.11897/SP.J.1016.2017. 01229.
|
ZHOU Feiyan, JIN Linpeng, and DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251. doi: 10.11897/SP.J.1016. 2017.01229.
|
王华利, 邹俊忠, 张见, 等. 基于深度卷积神经网络的快速图像分类算法[J]. 计算机工程与应用, 2017, 53(13): 181-188. doi: 10.3778/j.issn.1002-8331.1601-0435.
|
WANG Huali, ZOU Junzhong, ZHANG Jian, et al. Fast image classification algorithm based on deep convolutional neural network[J]. Computer Engineering and Applications, 2017, 53(13): 181-188. doi: 10.3778/j.issn.1002-8331.1601- 0435.
|
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. IEEE Computer Vision and Pattern Recognition, Las Vegas, 2016: 770-778.
|
ARMATO S, MCLENNAN G, MCNITT-GRAY M, et al. WE-B-201B-02: The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed public database of CT scans for lung nodule analysis[J]. Medical Physics, 2010, 37(6): 3416-3417. doi: 10.1118/1.3469350.
|
HENSCHKE C I, MCCAULEY D I, YANKELEVITZ D F, et al. Early lung cancer action project: A summary of the findings on baseline screening[J]. Oncologist, 2001, 6(2): 147-152. doi: 10.1634/theoncologist.6-2-147.
|
HOR A and ZIOU D. Image quality metrics: PSNR vs. SSIM[C]. 2010 20th IEEE International Conference on Pattern Recognition, Istanbul, 2010: 2366-2369. doi: 10.1109 /ICRP. 2010.579.
|