Available online , doi: 10.11999/JEIT250947
Abstract:
Low-Altitude Intelligent Networks (LAINs) function as a core infrastructure for the emerging low-altitude digital economy by connecting humans, machines, and physical objects through the integration of manned and unmanned aircraft with ground networks and facilities. This paper provides a comprehensive review of recent research on LAINs from four perspectives: network architecture, resource optimization, security threats and protection, and large model-enabled applications. First, existing standards, general architecture, key characteristics, and networking modes of LAINs are investigated. Second, critical issues related to airspace resource management, spectrum allocation, computing resource scheduling, and energy optimization are discussed. Third, existing/emerging security threats across sensing, network, application, and system layers are assessed, and multi-layer defense strategies in LAINs are reviewed. Furthermore, the integration of large model technologies with LAINs is also analyzed, highlighting their potential in task optimization and security enhancement. Future research directions are discussed to provide theoretical foundations and technical guidance for the development of efficient, secure, and intelligent LAINs. Significance LAINs support the low-altitude economy by enabling the integration of manned and unmanned aircraft with ground communication, computing, and control networks. By providing real-time connectivity and collaborative intelligence across heterogeneous platforms, LAINs support applications such as precision agriculture, public safety, low-altitude logistics, and emergency response. However, LAINs continue to face challenges created by dynamic airspace conditions, heterogeneous platforms, and strict real-time operational requirements. The development of large models also presents opportunities for intelligent resource coordination, proactive defense, and adaptive network management, which signals a shift in the design and operation of low-altitude networks. Progress Recent studies on LAINs have reported progress in network architecture, resource optimization, security protection, and large model integration. Architecturally, hierarchical and modular designs are proposed to integrate sensing, communication, and computing resources across air, ground, and satellite networks, which enables scalable and interoperable operations. In system optimization research, attention is given to airspace resource management, spectrum allocation, computing offloading, and energy-efficient scheduling through distributed optimization and AI-driven orchestration methods. In security research, multi-layer defense frameworks are developed to address sensing-layer spoofing, network-layer intrusions, and application-layer attacks through cross-layer threat intelligence and proactive defense mechanisms. Large Language Models (LLMs), Vision-Language Models (VLMs), and Multimodal LLMs (MLLMs) also support intelligent task planning, anomaly detection, and autonomous decision-making in complex low-altitude environments, which enhances the resilience and operational efficiency of LAINs. Conclusions This survey provides a comprehensive review of the architecture, security mechanisms, optimization techniques, and large model applications in LAINs. The challenges in multi-dimensional resource coordination, cross-layer security protection, and real-time system adaptation are identified, and existing or potential approaches to address these challenges are analyzed. By synthesizing recent research on architectural design, system optimization, and security defense, this work offers a unified perspective for researchers and practitioners aiming to build secure, efficient, and scalable LAIN systems. The findings emphasize the need for integrated solutions that combine algorithmic intelligence, system engineering, and architectural innovation to meet future low-altitude network demands. Prospects Future research on LAINs is expected to advance the integration of architecture design, intelligent optimization, security defense, and privacy preservation technologies to meet the demands of rapidly evolving low-altitude ecosystems. Key directions include developing knowledge-driven architectures for cross-domain semantic fusion, service-oriented network slicing, and distributed autonomous decision-making. Furthermore, research should also focus on proactive cross-layer security mechanisms supported by large models and intelligent agents, efficient model deployment through AI-hardware co-design and hierarchical computing architectures, and improved multimodal perception and adaptive decision-making to strengthen system resilience and scalability. In addition, establishing standardized benchmarks, open-source frameworks, and realistic testbeds is essential to accelerate innovation and ensure secure, reliable, and intelligent deployment of LAIN systems in real-world environments.