Advanced Search
Turn off MathJax
Article Contents
TANG Xinmin, LI Shuai, GU Junwei, GUAN Xiangmin. A Decision-making Method for UAV Conflict Detection and Avoidance System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240503
Citation: TANG Xinmin, LI Shuai, GU Junwei, GUAN Xiangmin. A Decision-making Method for UAV Conflict Detection and Avoidance System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240503

A Decision-making Method for UAV Conflict Detection and Avoidance System

doi: 10.11999/JEIT240503
Funds:  The National Natural Science Foundation of China (52072174, 61773202), The Open Fund for the Key Laboratory of Civil Aviation General Aviation Operations of China Civil Aviation Management Cadre College (CAMICKFJJ-2019-04)
  • Received Date: 2024-06-19
  • Rev Recd Date: 2024-09-07
  • Available Online: 2024-09-28
  • A novel approach is proposed to integrate the Detection and Avoidance Alerting Logic for Unmanned Aircraft Systems (DAIDALUS) with the Markov Decision Process (MDP) to address the decision-making challenges associated with collision avoidance in Unmanned Aerial Vehicle (UAV) Detection and Avoidance (DAA) systems. The guidance logic inherent in the DAIDALUS algorithm is utilized to compute drone collision avoidance strategies based on the current state space. These strategies are subsequently employed as the action space for the MDP, with suitable reward functions and state transition probabilities defined to establish an MDP model. The model is then used to investigate the effects of various discount factors on the UAV flight collision avoidance process. The simulation results show that compared to DAIDALUS, the efficiency of this method has increased by 27.2%;when the discount factor is set to 0.99, it can balance long-term and short-term returns; The net intrusion rate is 5.8%, and the closest distance between the threatening aircraft and the local aircraft is 343 meters, which can meet the requirements of collision avoidance during drone flight.
  • loading
  • [1]
    DIEZ-TOMILLO J, ALCARAZ-CALERO J M, and WANG Qi. Face verification algorithms for UAV applications: An empirical comparative analysis[J]. Journal of Communications Software and Systems, 2024, 20(1): 1–12. doi: 10.24138/JCOMSS-2023-0165.
    [2]
    OMERI M, ISUFAJ R, and ORTIZ R M. Quantifying well clear for autonomous small UAS[J]. IEEE Access, 2022, 10: 68365–68383. doi: 10.1109/ACCESS.2022.3186025.
    [3]
    KURU K, PINDER J M, JON WATKINSON B, et al. Toward mid-air collision-free trajectory for autonomous and pilot-controlled unmanned aerial vehicles[J]. IEEE Access, 2023, 11: 100323–100342. doi: 10.1109/ACCESS.2023.3314504.
    [4]
    INCE B, MARTINEZ V C, SELVAM P K, et al. Sense and avoid considerations for safe sUAS operations in urban environments[J]. IEEE Aerospace and Electronic Systems Magazine, 2024, 5(7): 1–16. doi: 10.1109/MAES.2024.3397269.
    [5]
    LEE S, WU M G, and CONE A C. Evaluating noncooperative detect-and-avoid well clear definitions with alerting performance and surveillance requirement[J]. Journal of Air Transportation, 2021, 29(4): 171–183. doi: 10.2514/1.D0246.
    [6]
    RTCA. RTCA DO-365B Minimum Operational Performance Standards (MOPS) for detect and avoid (DAA) systems[S]. Washington: RTCA, 2021.
    [7]
    BERNARDES FERNANDES FERREIRA N, MOSCATO M, TITOLO L, et al. A provably correct floating-point implementation of well clear avionics concepts[C]. The 23rd Conference on Formal Methods in Computer-Aided Design, Wien, Austria, 2023: 37–46. doi: 10.34727/2023/isbn.978-3-85448-060-0_32.
    [8]
    RYU J Y, LEE H, and LEE H T. Detect and avoid AI system model using a deep neural network[C]. 2022 IEEE/AIAA 41st Digital Avionics Systems Conference, Portsmouth, USA, 2022: 1–8. doi: 10.1109/DASC55683.2022.9925767.
    [9]
    高雅琪. 无人机系统中DAA模块的研究和设计实现[D]. [硕士论文], 电子科技大学, 2022. doi: 10.27005/d.cnki.gdzku.2022.003399.

    GAO Yaqi. Research design and implementation on DAA module of UAV system[D]. [Master dissertation], University of Electronic Science and Technology of China, 2022. doi: 10.27005/d.cnki.gdzku.2022.003399.
    [10]
    DE OLIVEIRA Í R, MATSUMOTO T, MAYNE A, et al. Analyzing the closed-loop performance of detect-and-avoid systems[C]. 2023 IEEE 26th International Conference on Intelligent Transportation Systems, Bilbao, Spain, 2023: 4947–4952. doi: 10.1109/ITSC57777.2023.10422365.
    [11]
    赵柠霄. 无人机探测与避撞系统告警和引导逻辑的研究[D]. [硕士论文], 电子科技大学, 2023. doi: 10.27005/d.cnki.gdzku.2023.005879.

    ZHAO Ningxiao. Research on warning and guidance logic in detect and avoid of UAV[D]. [Master dissertation], University of Electronic Science and Technology of China, 2023. doi: 10.27005/d.cnki.gdzku.2023.005879.
    [12]
    LIU Haotian, JIN Jiangfeng, LIU Kun, et al. Research on UAV air combat maneuver decision based on decision tree CART algorithm[M]. FU Wenxing, GU Mancang, and NIU Yifeng. Proceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022). Singapore, Singapore: Springer, 2023: 2638–2650. doi: 10.1007/978-981-99-0479-2_243.
    [13]
    HU Shiguang, RU Le, LV Maolong, et al. Evolutionary game analysis of behaviour strategy for UAV swarm in communication-constrained environments[J]. IET Control Theory & Applications, 2024, 18(3): 350–363. doi: 10.1049/cth2.12602.
    [14]
    CHANG Zheng, DENG Hengwei, YOU Li, et al. Trajectory design and resource allocation for multi-UAV networks: Deep reinforcement learning approaches[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(5): 2940–2951. doi: 10.1109/TNSE.2022.3171600.
    [15]
    SHEN Yang, WANG Xianbing, WANG Huajun, et al. A dynamic task assignment model for aviation emergency rescue based on multi-agent reinforcement learning[J]. Journal of Safety Science and Resilience, 2023, 4(3): 284–293. doi: 10.1016/J.JNLSSR.2023.06.001.
    [16]
    KATZ S M, ALVAREZ L E, OWEN M, et al. Collision risk and operational impact of speed change advisories as aircraft collision avoidance maneuvers[C]. The AIAA AVIATION 2022 Forum, Chicago, USA, 2022: 3824. doi: 10.2514/6.2022-3824.
    [17]
    王允钊. 机载防撞系统ACAS X中TRM模块的设计与实现[D]. [硕士论文], 电子科技大学, 2021.

    WANG Yunzhao. Design and implementation of TRM module in airborne collision avoidance system X[D]. [Master dissertation], University of Electronic Science and Technology of China, 2021.
    [18]
    HE Donglin, YANG Youzhi, DENG Shengji, et al. Comparison of collision avoidance logic between ACAS X and TCAS II in general aviation flight[C]. 2023 IEEE 5th International Conference on Civil Aviation Safety and Information Technology, Dali, China, 2023: 568–573. doi: 10.1109/ICCASIT58768.2023.10351533.
    [19]
    RUBÍ B, MORCEGO B, and PÉREZ R. Quadrotor path following and reactive obstacle avoidance with deep reinforcement learning[J]. Journal of Intelligent & Robotic Systems, 2021, 103(4): 62. doi: 10.1007/s10846-021-01491-2.
    [20]
    KATZ S M, JULIAN K D, STRONG C A, et al. Generating probabilistic safety guarantees for neural network controllers[J]. Machine Learning, 2023, 112(8): 2903–2931. doi: 10.1007/s10994-021-06065-9.
    [21]
    MOON C and AHN J. Markov decision process-based potential field technique for UAV planning[J]. Journal of the Korean Society for Industrial and Applied Mathematics, 2021, 25(4): 149–161. doi: 10.12941/jksiam.2021.25.149.
    [22]
    LI Ming, BAI He, and KRISHNAMURTHI N. A Markov decision process for the interaction between autonomous collision avoidance and delayed pilot commands[J]. IFAC-PapersOnLine, 2019, 51(34): 378–383. doi: 10.1016/j.ifacol.2019.01.012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (91) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return