Citation: | LIU Zhenhua, WANG Wenxin, DONG Xinfeng, WANG Baocang. One-sided Personalized Differential Privacy Random Response Algorithm Driven by User Sensitive Weights[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2768-2779. doi: 10.11999/JEIT250099 |
[1] |
DWORK C. Differential privacy[C]. 33rd International Colloquium on Automata, Languages and Programming, Venice, Italy, 2006: 1–12. doi: 10.1007/11787006_1.
|
[2] |
JORGENSEN Z, YU Ting, and CORMODE G. Conservative or liberal? Personalized differential privacy[C]. The 31st International Conference on Data Engineering, Seoul, Korea (South), 2015: 1023–1034. doi: 10.1109/ICDE.2015.7113353.
|
[3] |
KOTSOGIANNIS I, DOUDALIS S, HANEY S, et al. One-sided differential privacy[C]. The 36th International Conference on Data Engineering, Dallas, USA, 2020: 493–504. doi: 10.1109/ICDE48307.2020.00049.
|
[4] |
RATLIFF Z and VADHAN S. A framework for differential privacy against timing attacks[C]. ACM SIGSAC Conference on Computer and Communications Security, Salt Lake City, USA, 2024: 3615–3629. doi: 10.1145/3658644.3690206.
|
[5] |
WANG Shiming, XIANG Liyao, CHENG Bowei, et al. Curator attack: When blackbox differential privacy auditing loses its power[C]. ACM SIGSAC Conference on Computer and Communications Security, Salt Lake City, USA, 2024: 3540–3554. doi: 10.1145/3658644.3690367.
|
[6] |
LIU Junxu, LOU Jian, XIONG Li, et al. Cross-silo federated learning with record-level personalized differential privacy[C]. ACM SIGSAC Conference on Computer and Communications Security, Salt Lake City, 2024: 303–317. doi: 10.1145/3658644.3670351.
|
[7] |
IMOLA J, CHOWDHURY A R, and CHAUDHURI K. Metric differential privacy at the user-level via the earth-mover’s distance[C]. ACM SIGSAC Conference on Computer and Communications Security, Salt Lake City, USA, 2024: 348–362. doi: 10.1145/3658644.3690363.
|
[8] |
魏立斐, 张无忌, 张蕾, 等. 基于本地差分隐私的异步横向联邦安全梯度聚合方案[J]. 电子与信息学报, 2024, 46(7): 3010–3018. doi: 10.11999/JEIT230923.
WEI Lifei, ZHANG Wuji, ZHANG Lei, et al. A secure gradient aggregation scheme based on local differential privacy in asynchronous horizontal federated learning[J]. Journal of Electronics & Information Technology, 2024, 46(7): 3010–3018. doi: 10.11999/JEIT230923.
|
[9] |
DU Minxin, YUE Xiang, CHOW S S M, et al. DP-Forward: Fine-tuning and inference on language models with differential privacy in forward pass[C]. ACM SIGSAC Conference on Computer and Communications Security, Copenhagen, Denmark, 2023: 2665–2679. doi: 10.1145/3576915.3616592.
|
[10] |
DWORK C, KENTHAPADI K, MCSHERRY F, et al. Our data, ourselves: Privacy via distributed noise generation[C]. 25th International Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, 2006: 486–503. doi: 10.1007/11761679_29.
|
[11] |
GEHRKE J, HAY M, LUI E, et al. Crowd-blending privacy[C]. 32nd Annual Cryptology Conference on Advances in Cryptology, Santa Barbara, USA, 2012: 479–496. doi: 10.1007/978-3-642-32009-5_28.
|
[12] |
YANG Bin, SATO I, and NAKAGAWA H. Bayesian differential privacy on correlated data[C]. ACM International Conference on Management of Data, Melbourne, Australia, 2015: 747–762. doi: 10.1145/2723372.2747643.
|
[13] |
FU Yucheng and WANG Tianhao. Benchmarking secure sampling protocols for differential privacy[C]. ACM SIGSAC Conference on Computer and Communications Security, Salt Lake City, USA, 2024: 318–332. doi: 10.1145/3658644.3690257.
|
[14] |
LU Mingjie and LIU Zhenhua. Improving accuracy of interactive queries in personalized differential privacy[C]. 6th International Conference on Frontiers in Cyber Security, Chengdu, China, 2024: 141–159. doi: 10.1007/978-981-99-9331-4_10.
|
[15] |
NISSIM K, RASKHODNIKOVA S, and SMITH A. Smooth sensitivity and sampling in private data analysis[C]. Thirty-Ninth Annual ACM Symposium on Theory of Computing, San Diego, USA, 2007: 75–84. doi: 10.1145/1250790.1250803.
|
[16] |
HUANG Wen, ZHOU Shijie, ZHU Tianqing, et al. Privately publishing internet of things data: Bring personalized sampling into differentially private mechanisms[J]. IEEE Internet of Things Journal, 2022, 9(1): 80–91. doi: 10.1109/JIOT.2021.3089518.
|
[17] |
朱友文, 王珂, 周玉倩. 一种满足个性化差分隐私的多方垂直划分数据合成机制[J]. 电子与信息学报, 2024, 46(5): 2159–2176. doi: 10.11999/JEIT231158.
ZHU Youwen, WANG Ke, and ZHOU Yuqian. A multi-party vertically partitioned data synthesis mechanism with personalized differential privacy[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2159–2176. doi: 10.11999/JEIT231158.
|
[18] |
LIU Zhenhua, WANG Wenxin, LIANG Han, et al. Enhancing data utility in personalized differential privacy: A fine-grained processing approach[C]. Second International Conference on Data Security and Privacy Protection, Xi’an, China, 2025: 47–66. doi: 10.1007/978-981-97-8546-9_3.
|
[19] |
LI Yijing, TAO Xiaofeng, ZHANG Xuefei, et al. Break the data barriers while keeping privacy: A graph differential privacy method[J]. IEEE Internet of Things Journal, 2023, 10(5): 3840–3850. doi: 10.1109/JIOT.2022.3151348.
|
[20] |
LIU Jiandong, ZHANG Lan, LV Chaojie, et al. TPMDP: Threshold personalized multi-party differential privacy via optimal Gaussian mechanism[C]. 20th International Conference on Mobile Ad Hoc and Smart Systems, Toronto, Canada, 2023: 161–169. doi: 10.1109/MASS58611.2023.00027.
|
[21] |
XU Chuan, DING Yingyi, CHEN Chao, et al. Personalized location privacy protection for location-based services in vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 1163–1177. doi: 10.1109/TITS.2022.3182019.
|
[22] |
ZHANG Mingyue, ZHOU Junlong, ZHANG Gongxuan, et al. APDP: Attribute-based personalized differential privacy data publishing scheme for social networks[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(2): 922–933. doi: 10.1109/TNSE.2022.3224731.
|
[23] |
GENG Quan, DING Wei, GUO Ruiqi, et al. Tight analysis of privacy and utility tradeoff in approximate differential privacy[C]. The 23rd International Conference on Artificial Intelligence and Statistics, Palermo, Italy, 2020: 89–99.
|
[24] |
HUANG Wen, ZHOU Shijie, LIAO Yongjian, et al. Optimizing query times for multiple users scenario of differential privacy[J]. IEEE Access, 2019, 7: 183292–183299. doi: 10.1109/ACCESS.2019.2960283.
|
[25] |
NIU Ben, CHEN Yahong, WANG Boyang, et al. AdaPDP: Adaptive personalized differential privacy[C]. IEEE Conference on Computer Communications, Vancouver, Canada, 2021: 1–10. doi: 10.1109/INFOCOM42981.2021.9488825.
|
[26] |
HANEY S, MACHANAVAJJHALA A, and DING Bolin. Design of policy-aware differentially private algorithms[J]. Proceedings of the VLDB Endowment, 2015, 9(4): 264–275. doi: 10.14778/2856318.2856322.
|
[27] |
BÖHLER J, BERNAU D, and KERSCHBAUM F. Privacy-preserving outlier detection for data streams[C]. 31st Annual IFIP WG 11.3 Conference on Data and Applications Security and Privacy XXXI, Philadelphia, USA, 2017: 225–238. doi: 10.1007/978-3-319-61176-1_12.
|
[28] |
ASIF H, VAIDYA J, and PAPAKONSTANTINOU P A. Identifying anomalies while preserving privacy[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 12264–12281. doi: 10.1109/TKDE.2021.3129633.
|
[29] |
LI Xin, ZHU Hong, ZHANG Zhiqiang, et al. Item-oriented personalized LDP for discrete distribution estimation[C]. 28th European Symposium on Research in Computer Security, The Hague, The Netherlands, 2024: 446–466. doi: 10.1007/978-3-031-51476-0_22.
|
[30] |
GOLDBERG A, FANTI G C, and SHAH N B. Batching of tasks by users of pseudonymous forums: Anonymity compromise and protection[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2023, 7(1): 22. doi: 10.1145/3579335.
|
[31] |
PAPPACHAN P, ZHANG Shufan, HE Xi, et al. Preventing inferences through data dependencies on sensitive data[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(10): 5308–5327. doi: 10.1109/TKDE.2023.3336630.
|
[32] |
MCSHERRY F. Privacy integrated queries: An extensible platform for privacy-preserving data analysis[J]. Communications of the ACM, 2010, 53(9): 89–97. doi: 10.1145/1810891.1810916.
|
[33] |
DWORK C, MCSHERRY F, NISSIM K, et al. Calibrating noise to sensitivity in private data analysis[C]. Third Theory of Cryptography Conference on Theory of Cryptography, New York, USA, 2006: 265–284. doi: 10.1007/11681878_14.
|
[34] |
DEVAKUMAR K P. Data survey of COVID-19[EB/OL]. https://www.kaggle.com/datasets/imdevskp/corona-virus-report, 2024.
|