Citation: | WANG Xinyi, FEI Zesong, ZHOU Yiqing, HU Jie. Integrated Sensing, Communication, Computation, and Intelligence Towards IoT: Key Technologies and Future Directions[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT240806 |
[1] |
尹浩, 黄宇红, 韩林丛, 等. 6G通信–感知–计算融合网络的思考[J]. 中国科学: 信息科学, 2023, 53(9): 1838–1842. doi: 10.1360/SSI-2023-0135.
YIN Hao, HUANG Yuhong, HAN Lincong, et al. Thoughts on 6G integrated communication, sensing and computing networks[J]. Scientia Sinica Informationis, 2023, 53(9): 1838–1842. doi: 10.1360/SSI-2023-0135.
|
[2] |
闫实, 彭木根, 王文博. 通信-感知-计算融合: 6G愿景与关键技术[J]. 北京邮电大学学报, 2021, 44(4): 1–11. doi: 10.13190/j.jbupt.2021-081.
YAN Shi, PENG Mugen, and WANG Wenbo. Integration of communication, sensing and computing: The vision and key technologies of 6G[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(4): 1–11. doi: 10.13190/j.jbupt.2021-081.
|
[3] |
YANG Yizhen, GONG Yi, and WU Y C. Intelligent-reflecting-surface-aided mobile edge computing with binary offloading: Energy minimization for IoT devices[J]. IEEE Internet of Things Journal, 2022, 9(15): 12973–12983. doi: 10.1109/JIOT.2022.3173027.
|
[4] |
WANG Shuai, WU Y C, XIA Minghua, et al. Machine intelligence at the edge with learning centric power allocation[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7293–7308. doi: 10.1109/TWC.2020.3010522.
|
[5] |
XU Chenren, YANG Lei, and ZHANG Pengyu. Practical backscatter communication systems for battery-free internet of things: A tutorial and survey of recent research[J]. IEEE Signal Processing Magazine, 2018, 35(5): 16–27. doi: 10.1109/MSP.2018.2848361.
|
[6] |
VASISHT D, ZHANG Guo, ABARI O, et al. In-body backscatter communication and localization[C]. The 2018 Conference of the ACM Special Interest Group on Data Communication, Budapest, Hungary, 2024: 132–146. doi: 10.1145/3230543.3230565.
|
[7] |
CHEN Erhu, WU Peiran, WU Y C, et al. UGV-assisted wireless powered backscatter communications for large-scale IoT networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(5): 3147–3161. doi: 10.1109/TWC.2021.3118787.
|
[8] |
JIANG Tao, ZHANG Yu, MA Wenyuan, et al. Backscatter communication meets practical battery-free internet of things: A survey and outlook[J]. IEEE Communications Surveys & Tutorials, 2023, 25(3): 2021–2051. doi: 10.1109/COMST.2023.3278239.
|
[9] |
LASSER G and MECKLENBRäUKER C F. Self-interference noise limitations of RFID readers[C]. 2015 IEEE International Conference on RFID, San Diego, USA, 2015: 145–150. doi: 10.1109/RFID.2015.7113085.
|
[10] |
KIMIONIS J, BLETSAS A, and SAHALOS J N. Increased range bistatic scatter radio[J]. IEEE Transactions on Communications, 2014, 62(3): 1091–1104. doi: 10.1109/TCOMM.2014.020314.130559.
|
[11] |
ALABA S Y, GURBUZ A C, and BALL J E. Emerging trends in autonomous vehicle perception: Multimodal fusion for 3D object detection[J]. World Electric Vehicle Journal, 2024, 15(1): 20. doi: 10.3390/wevj15010020.
|
[12] |
HSU C P, LI Boda, SOLANO-RIVAS B, et al. A review and perspective on optical phased array for automotive LiDAR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(1): 8300416. doi: 10.1109/JSTQE.2020.3022948.
|
[13] |
NAWAZ M, TANG J K T, BIBI K, et al. Robust cognitive capability in autonomous driving using sensor fusion techniques: A survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(5): 3228–3243. doi: 10.1109/TITS.2023.3327949.
|
[14] |
WANG Xuehao, LI Shuai, CHEN Chenglizhao, et al. Data-level recombination and lightweight fusion scheme for RGB-D salient object detection[J]. IEEE Transactions on Image Processing, 2021, 30: 458–471. doi: 10.1109/TIP.2020.3037470.
|
[15] |
NOBIS F, SHAFIEI E, KARLE P, et al. Radar voxel fusion for 3D object detection[J]. Applied Sciences, 2021, 11(12): 5598. doi: 10.3390/app11125598.
|
[16] |
BAI Xuyang, HU Zeyu, ZHU Xinge, et al. Transfusion: Robust LiDAR-camera fusion for 3D object detection with transformers[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 1080–1089. doi: 10.1109/CVPR52688.2022.00116.
|
[17] |
XU Hu, ZHANG Xiaomin, HE Ju, et al. Real-time volumetric perception for unmanned surface vehicles through fusion of radar and camera[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 5015912. doi: 10.1109/TIM.2024.3381690.
|
[18] |
JIN Yuhao, ZHU Xiaohui, YUE Yong, et al. CR-DINO: A novel camera-radar fusion 2-D object detection model based on transformer[J]. IEEE Sensors Journal, 2024, 24(7): 11080–11090. doi: 10.1109/JSEN.2024.3357775.
|
[19] |
CHARAN G and ALKHATEEB A. User identification: A key enabler for multi-user vision-aided communications[J]. IEEE Open Journal of the Communications Society, 2024, 5: 472–488. doi: 10.1109/OJCOMS.2023.3342089.
|
[20] |
HU Zuhui, JING Yaguang, and WU Guoqing. Decision-level fusion detection method of visible and infrared images under low light conditions[J]. EURASIP Journal on Advances in Signal Processing, 2023, 2023(1): 38. doi: 10.1186/s13634-023-01002-5.
|
[21] |
XU Chengcheng, ZHAO Haiyan, XIE Hongbin, et al. Multisensor decision-level fusion network based on attention mechanism for object detection[J]. IEEE Sensors Journal, 2024, 24(19): 31466–31480. doi: 10.1109/JSEN.2024.3442951.
|
[22] |
TANG Qin, LIANG Jing, and ZHU Fangqi. A comparative review on multi-modal sensors fusion based on deep learning[J]. Signal Processing, 2023, 213: 109165. doi: 10.1016/j.sigpro.2023.109165.
|
[23] |
ZHAO Kun, MA Lingfei, MENG Yu, et al. 3D vehicle detection using multi-level fusion from point clouds and images[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15146–15154. doi: 10.1109/TITS.2021.3137392.
|
[24] |
ABBAS N, ZHANG Yan, TAHERKORDI A, et al. Mobile edge computing: A survey[J]. IEEE Internet of Things Journal, 2018, 5(1): 450–465. doi: 10.1109/JIOT.2017.2750180.
|
[25] |
PHAM Q V, FANG Fang, HA V N, et al. A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art[J]. IEEE Access, 2020, 8: 116974–117017. doi: 10.1109/ACCESS.2020.3001277.
|
[26] |
CHEN Min and HAO Yixue. Task offloading for mobile edge computing in software defined ultra-dense network[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(3): 587–597. doi: 10.1109/JSAC.2018.2815360.
|
[27] |
CHENG Nan, LYU Feng, QUAN Wei, et al. Space/aerial-assisted computing offloading for IoT applications: A learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1117–1129. doi: 10.1109/JSAC.2019.2906789.
|
[28] |
JIANG Hongbo, DAI Xingxia, XIAO Zhu, et al. Joint task offloading and resource allocation for energy-constrained mobile edge computing[J]. IEEE Transactions on Mobile Computing, 2023, 22(7): 4000–4015. doi: 10.1109/TMC.2022.3150432.
|
[29] |
GUO Ming, HU Xin, CHEN Yanru, et al. Joint scheduling and offloading schemes for multiple interdependent computation tasks in mobile edge computing[J]. IEEE Internet of Things Journal, 2024, 11(4): 5718–5730. doi: 10.1109/JIOT.2023.3307769.
|
[30] |
LOU Jiong, TANG Zhiqing, ZHANG Songli, et al. Cost-effective scheduling for dependent tasks with tight deadline constraints in mobile edge computing[J]. IEEE Transactions on Mobile Computing, 2023, 22(10): 5829–5845. doi: 10.1109/TMC.2022.3188770.
|
[31] |
DAI Xingxia, XIAO Zhu, JIANG Hongbo, et al. Task co-offloading for D2D-assisted mobile edge computing in industrial internet of things[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 480–490. doi: 10.1109/TII.2022.3158974.
|
[32] |
CHEN Chen, ZENG Yini, LI Huan, et al. A multihop task offloading decision model in MEC-enabled internet of vehicles[J]. IEEE Internet of Things Journal, 2023, 10(4): 3215–3230. doi: 10.1109/JIOT.2022.3143529.
|
[33] |
XIA Shichao, YAO Zhixiu, LI Yun, et al. Distributed computing and networking coordination for task offloading under uncertainties[J]. IEEE Transactions on Mobile Computing, 2024, 23(5): 5280–5294. doi: 10.1109/TMC.2023.3305013.
|
[34] |
AL-TURJMAN F, ZAHMATKESH H, and SHAHROZE R. An overview of security and privacy in smart cities’ IoT communications[J]. Transactions on Emerging Telecommunications Technologies, 2022, 33(3): e3677. doi: 10.1002/ett.3677.
|
[35] |
ZHU Guangxu, LIU Dongzhu, DU Yuqing, et al. Toward an intelligent edge: Wireless communication meets machine learning[J]. IEEE Communications Magazine, 2020, 58(1): 19–25. doi: 10.1109/MCOM.001.1900103.
|
[36] |
JAVEED D, SAEED M S, AHMAD I, et al. An intelligent intrusion detection system for smart consumer electronics network[J]. IEEE Transactions on Consumer Electronics, 2023, 69(4): 906–913. doi: 10.1109/TCE.2023.3277856.
|
[37] |
WEN Jie, ZHANG Zhixia, LAN Yang, et al. A survey on federated learning: Challenges and applications[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(2): 513–535. doi: 10.1007/s13042-022-01647-y.
|
[38] |
NGUYEN D C, DING Ming, PATHIRANA P N, et al. Federated learning for internet of things: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1622–1658. doi: 10.1109/COMST.2021.3075439.
|
[39] |
IMTEAJ A, THAKKER U, WANG Shiqiang, et al. A survey on federated learning for resource-constrained IoT devices[J]. IEEE Internet of Things Journal, 2021, 9(1): 1–24. doi: 10.1109/JIOT.2021.3095077.
|
[40] |
GHIMIRE B and RAWAT D B. Recent advances on federated learning for cybersecurity and cybersecurity for federated learning for internet of things[J]. IEEE Internet of Things Journal, 2022, 9(11): 8229–8249. doi: 10.1109/JIOT.2022.3150363.
|
[41] |
LI Tian, SAHU A K, ZAHEER M, et al. On the convergence of federated optimization in heterogeneous networks[EB/OL]. https://arxiv.org/abs/1812.06127v1, 2018.
|
[42] |
LUO Bing, XIAO Wenli, WANG Shiqiang, et al. Tackling system and statistical heterogeneity for federated learning with adaptive client sampling[C]. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications, London, United Kingdom, 2022: 1739–1748. doi: 10.1109/INFOCOM48880.2022.9796935.
|
[43] |
LI Qinbin, WEN Zeyi, WU Zhaomin, et al. A survey on federated learning systems: Vision, hype and reality for data privacy and protection[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 3347–3366. doi: 10.1109/TKDE.2021.3124599.
|
[44] |
MORIAI S. Privacy-preserving deep learning via additively homomorphic encryption[C]. 2019 IEEE 26th Symposium on Computer Arithmetic (ARITH), Kyoto, Japan, 2019: 198. doi: 10.1109/ARITH.2019.00047.
|
[45] |
KUMAR P, GUPTA G P, and TRIPATHI R. PEFL: Deep privacy-encoding-based federated learning framework for smart agriculture[J]. IEEE Micro, 2022, 42(1): 33–40. doi: 10.1109/MM.2021.3112476.
|
[46] |
PEI Jiaming, LI Shike, YU Zhi, et al. Federated learning encounters 6G wireless communication in the scenario of internet of things[J]. IEEE Communications Standards Magazine, 2023, 7(1): 94–100. doi: 10.1109/MCOMSTD.0005.2200044.
|
[47] |
WANG Chengxiang, YOU Xiaohu, GAO Xiqi, et al. On the road to 6G: Visions, requirements, key technologies, and testbeds[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2): 905–974. doi: 10.1109/COMST.2023.3249835.
|
[48] |
李闻. 物理层安全传输关键技术研究[D]. [硕士论文], 电子科技大学, 2024. doi: 10.27005/d.cnki.gdzku.2024.002588.
LI Wen. Research on key technologies for secure transmission at the physical layer[D]. [Master dissertation], University of Electronic Science and Technology of China, 2024. doi: 10.27005/d.cnki.gdzku.2024.002588.
|
[49] |
TRIPI G, IACOBELLI A, RINIERI L, et al. Security and trust in the 6G era: Risks and mitigations[J]. Electronics, 2024, 13(11): 2162. doi: 10.3390/electronics13112162.
|
[50] |
ZHANG J A, HUANG Xiaojing, GUO Y J, et al. Multibeam for joint communication and radar sensing using steerable analog antenna arrays[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 671–685. doi: 10.1109/TVT.2018.2883796.
|
[51] |
WU Nan, WANG Xinyi, FEI Zesong, et al. RIS-assisted integrated sensing and backscatter communications for future IoT networks[J]. IEEE Internet of Things Magazine, 2024, 7(4): 44–50. doi: 10.1109/IOTM.001.2300184.
|
[52] |
XU Sai, DU Yanan, ZHANG Jiliang, et al. An IRS backscatter enabled integrated sensing, communication and computation system[EB/OL]. https://arxiv.org/abs/2207.10219, 2022.
|
[53] |
XU Sai, DU Yanan, LIU Jiajia, et al. Weighted sum rate maximization in IRS-BackCom enabled downlink multi-cell MISO network[J]. IEEE Communications Letters, 2022, 26(3): 642–646. doi: 10.1109/LCOMM.2021.3140207.
|
[54] |
WANG Xinyi, FEI Zesong, and WU Qingqing. Integrated sensing and communication for RIS-assisted backscatter systems[J]. IEEE Internet of Things Journal, 2023, 10(15): 13716–13726. doi: 10.1109/JIOT.2023.3262867.
|
[55] |
WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
|
[56] |
FANG Zhuangxin, LUO Zhiyong, and WANG Xiti. An efficient CNN-RNN recognition network for complex interference signal[C]. SPIE 12720, 2022 Workshop on Electronics Communication Engineering, Xi'an, China, 2023: 127200E. doi: 10.1117/12.2667930.
|
[57] |
LIU Qian, LUO Rui, LIANG Hairong, et al. Energy-efficient joint computation offloading and resource allocation strategy for ISAC-aided 6G V2X networks[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(1): 413–423. doi: 10.1109/TGCN.2023.3234263.
|
[58] |
HUANG Ning, DOU Chenglong, WU Yuan, et al. Unmanned-aerial-vehicle-aided integrated sensing and computation with mobile-edge computing[J]. IEEE Internet of Things Journal, 2023, 10(19): 16830–16844. doi: 10.1109/JIOT.2023.3270332.
|
[59] |
HUANG Ning, DOU Chenglong, WU Yuan, et al. Energy-efficient integrated sensing and communication: A multi-access edge computing design[J]. IEEE Wireless Communications Letters, 2023, 12(12): 2053–2057. doi: 10.1109/LWC.2023.3306433.
|
[60] |
YANG Heng, FENG Zhiyong, WEI Zhiqing, et al. Intelligent computation offloading for joint communication and sensing-based vehicular networks[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 3600–3616. doi: 10.1109/TWC.2023.3309688.
|
[61] |
DING Changfeng, WANG Junbo, ZHANG Hua, et al. Joint MIMO precoding and computation resource allocation for dual-function radar and communication systems with mobile edge computing[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2085–2102. doi: 10.1109/JSAC.2022.3157389.
|
[62] |
HUANG Ning, DOU Chenglong, WU Yuan, et al. Mobile edge computing aided integrated sensing and communication with short-packet transmissions[J]. IEEE Transactions on Wireless Communications, 2024, 23(7): 7759–7774. doi: 10.1109/TWC.2023.3344479.
|
[63] |
QI Qiao, CHEN Xiaoming, KHALILI A, et al. Integrating sensing, computing, and communication in 6G wireless networks: Design and optimization[J]. IEEE Transactions on Communications, 2022, 70(9): 6212–6227. doi: 10.1109/TCOMM.2022.3190363.
|
[64] |
LIU Peng, FEI Zesong, WANG Xinyi, et al. Joint beamforming and offloading design for integrated sensing, communication and computation system[EB/OL]. https://arxiv.org/abs/2401.02071, 2024.
|
[65] |
SCIUTO G L, KOWOL P, NOWAK P, et al. Neural network developed for obstacle avoidance of the four wheeled electric vehicle[C]. 2023 30th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Istanbul, Turkiye, 2023: 1–4. doi: 10.1109/ICECS58634.2023.10382857.
|
[66] |
BHARILYA V and KUMAR N. Machine learning for autonomous vehicle's trajectory prediction: A comprehensive survey, challenges, and future research directions[J]. Vehicular Communications, 2024, 46: 100733. doi: 10.1016/j.vehcom.2024.100733.
|
[67] |
PERVEJ M F, GUO Jianlin, KIM K J, et al. Mobility, communication and computation aware federated learning for internet of vehicles[C]. 2022 IEEE Intelligent Vehicles Symposium (IV), Aachen, Germany, 2022: 750–757. doi: 10.1109/IV51971.2022.9827190.
|
[68] |
NAZER B and GASTPAR M. Computation over multiple-access channels[J]. IEEE Transactions on Information Theory, 2007, 53(10): 3498–3516. doi: 10.1109/TIT.2007.904785.
|
[69] |
WANG Zhibin, ZHAO Yapeng, ZHOU Yong, et al. Over-the-air computation for 6G: Foundations, technologies, and applications[J]. IEEE Internet of Things Journal, 2024, 11(14): 24634–24658. doi: 10.1109/JIOT.2024.3405448.
|
[70] |
YANG Kai, JIANG Tao, SHI Yuanming, et al. Federated learning via over-the-air computation[J]. IEEE Transactions on Wireless Communications, 2020, 19(3): 2022–2035. doi: 10.1109/TWC.2019.2961673.
|
[71] |
KIM M, SWINDLEHURST A L, and PARK D. Beamforming vector design and device selection in over-the-air federated learning[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 7464–7477. doi: 10.1109/TWC.2023.3251339.
|
[72] |
MU Yujia, WEI Xizixiang, and SHEN Cong. An autoencoder-based constellation design for AirComp in wireless federated learning[C]. ICC 2024 - IEEE International Conference on Communications, Denver, USA, 2024: 5565–5570. doi: 10.1109/ICC51166.2024.10622489.
|
[73] |
ZHENG Zijian, DENG Yansha, LIU Xiaonan, et al. Asynchronous federated learning via over-the-air computation[C]. GLOBECOM 2023 - 2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 2023: 1345–1350. doi: 10.1109/GLOBECOM54140.2023.10437951.
|
[74] |
QIAO Senyao, GAO Fei, WU Jianghang, et al. An enhanced vehicle trajectory prediction model leveraging LSTM and social-attention mechanisms[J]. IEEE Access, 2024, 12: 1718–1726. doi: 10.1109/ACCESS.2023.3345643.
|
[75] |
ZHENG P, ZHU Yao, YULIN H, et al. Over-the-air federated learning client selection in integrated sensing, computing and communication[C]. 2024 IEEE International Conference on Communications Workshops (ICC Workshops), Denver, USA, 2024: 804–809. doi: 10.1109/ICCWorkshops59551.2024.10615482.
|
[76] |
LA BRUNA G, CARLETTI C R, RUSCA R, et al. Edge-assisted federated learning in vehicular networks[C]. 2022 18th International Conference on Mobility, Sensing and Networking (MSN), Guangzhou, China, 2022: 163–170. doi: 10.1109/MSN57253.2022.00038.
|
[77] |
CHEN Jingran, GUO Boren, XU Yang, et al. 5GS assistance for federated learning member selection in trajectory prediction scenarios[C]. 2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Foshan, China, 2022: 216–220. doi: 10.1109/ICCCWorkshops55477.2022.9896691.
|
[78] |
ZHANG Rui and HO C K. MIMO broadcasting for simultaneous wireless information and power transfer[J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 1989–2001. doi: 10.1109/TWC.2013.031813.120224.
|
[79] |
CHEN Yilong, HUA Haocheng, XU Jie, et al. ISAC meets SWIPT: Multi-functional wireless systems integrating sensing, communication, and powering[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 8264–8280. doi: 10.1109/TWC.2023.3348109.
|
[80] |
ZHOU Ziqin, LI Xiaoyang, ZHU Guangxu, et al. Integrating sensing, communication, and power transfer: Multiuser beamforming design[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(9): 2228–2242. doi: 10.1109/JSAC.2024.3413996.
|
[81] |
ZENG Xiangyu, XING Lukuan, WU Youlong, et al. Beamforming design for integrated sensing and SWIPT system[C]. 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Kyoto, Japan, 2022: 403–408. doi: 10.1109/PIMRC54779.2022.9977463.
|
[82] |
YANG Yue, GAO Hui, YANG Xiaoyu, et al. Joint beamforming for RIS-assisted integrated communication, sensing and power transfer systems[J]. IEEE Wireless Communications Letters, 2024, 13(2): 288–292. doi: 10.1109/LWC.2023.3327360.
|
[83] |
ZHANG Yumeng, ADITYA S, and CLERCKX B. Multi-functional OFDM signal design for integrated sensing, communications, and power transfer[EB/OL]. https://arxiv.org/abs/2311.00104, 2023.
|
[84] |
DONG Fuwang, LIU Fan, LU Shihang, et al. Rethinking estimation rate for wireless sensing: A rate-distortion perspective[J]. IEEE Transactions on Vehicular Technology, 2023, 72(12): 16876–16881. doi: 10.1109/TVT.2023.3298005.
|
[85] |
FEI Zesong, TANG Shuntian, WANG Xinyi, et al. Revealing the trade-off in ISAC systems: The KL divergence perspective[J]. IEEE Wireless Communications Letters, 2024, 13(10): 2747–2751. doi: 10.1109/LWC.2024.3443409.
|
[86] |
ZHANG Jiahui, FEI Zesong, WANG Xinyi, et al. Joint resource allocation and user association for multi-cell integrated sensing and communication systems[J]. EURASIP Journal on Wireless Communications and Networking, 2023, 2023(1): 64. doi: 10.1186/s13638-023-02264-1.
|